1 /* $Id: qsort.c,v 1.3 2003/04/11 12:31:46 mjt Exp $
2 * Adopted from GNU glibc by Mjt.
3 * See stdlib/qsort.c in glibc */
5 /* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc.
6 This file is part of the GNU C Library.
7 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Lesser General Public
11 License as published by the Free Software Foundation; either
12 version 2.1 of the License, or (at your option) any later version.
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Lesser General Public License for more details.
19 You should have received a copy of the GNU Lesser General Public
20 License along with the GNU C Library; if not, write to the Free
21 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25 * first, define the following:
26 * QSORT_TYPE - type of array elements
27 * QSORT_BASE - pointer to array
28 * QSORT_NELT - number of elements in the array (must not be 0)
29 * QSORT_LT - QSORT_LT(a,b) should return true if *a < *b
30 * and second, just #include this file into the place you want it.
31 * Some C code will be inserted into that place, to sort array defined
32 * by QSORT_TYPE, QSORT_BASE, QSORT_NELT and comparision routine QSORT_LT.
35 /* Swap two items pointed to by A and B using temporary buffer t. */
36 #define _QSORT_SWAP(a, b, t) ((void)((t = *a), (*a = *b), (*b = t)))
38 /* Discontinue quicksort algorithm when partition gets below this size.
39 This particular magic number was chosen to work best on a Sun 4/260. */
40 #define _QSORT_MAX_THRESH 4
42 /* Stack node declarations used to store unfulfilled partition obligations
49 /* The next 4 #defines implement a very fast in-line stack abstraction. */
50 /* The stack needs log (total_elements) entries (we could even subtract
51 log(MAX_THRESH)). Since total_elements has type unsigned, we get as
52 upper bound for log (total_elements):
53 bits per byte (CHAR_BIT) * sizeof(unsigned). */
54 #define _QSORT_STACK_SIZE (8 * sizeof(unsigned))
55 #define _QSORT_PUSH(top, low, high) \
56 (((top->_lo = (low)), (top->_hi = (high)), ++top))
57 #define _QSORT_POP(low, high, top) \
58 ((--top, (low = top->_lo), (high = top->_hi)))
59 #define _QSORT_STACK_NOT_EMPTY (_stack < _top)
62 /* Order size using quicksort. This implementation incorporates
63 four optimizations discussed in Sedgewick:
65 1. Non-recursive, using an explicit stack of pointer that store the
66 next array partition to sort. To save time, this maximum amount
67 of space required to store an array of SIZE_MAX is allocated on the
68 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
69 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
70 Pretty cheap, actually.
72 2. Chose the pivot element using a median-of-three decision tree.
73 This reduces the probability of selecting a bad pivot value and
74 eliminates certain extraneous comparisons.
76 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
77 insertion sort to order the MAX_THRESH items within each partition.
78 This is a big win, since insertion sort is faster for small, mostly
79 sorted array segments.
81 4. The larger of the two sub-partitions is always pushed onto the
82 stack first, with the algorithm then concentrating on the
83 smaller partition. This *guarantees* no more than log (total_elems)
84 stack size is needed (actually O(1) in this case)! */
88 QSORT_TYPE *const _base = (QSORT_BASE);
89 const unsigned _elems = (QSORT_NELT);
92 if (_elems > _QSORT_MAX_THRESH) {
93 QSORT_TYPE *_lo = _base;
94 QSORT_TYPE *_hi = _lo + _elems - 1;
96 QSORT_TYPE *_hi, *_lo;
97 } _stack[_QSORT_STACK_SIZE], *_top = _stack + 1;
99 while (_QSORT_STACK_NOT_EMPTY) {
100 QSORT_TYPE *_left_ptr, *_right_ptr;
102 /* Select median value from among LO, MID, and HI. Rearrange
103 LO and HI so the three values are sorted. This lowers the
104 probability of picking a pathological pivot value and
105 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
108 QSORT_TYPE *_mid = _lo + ((_hi - _lo) >> 1);
110 if (QSORT_LT (_mid, _lo))
111 _QSORT_SWAP (_mid, _lo, _hold);
112 if (QSORT_LT (_hi, _mid))
113 _QSORT_SWAP (_mid, _hi, _hold);
116 if (QSORT_LT (_mid, _lo))
117 _QSORT_SWAP (_mid, _lo, _hold);
121 _right_ptr = _hi - 1;
123 /* Here's the famous ``collapse the walls'' section of quicksort.
124 Gotta like those tight inner loops! They are the main reason
125 that this algorithm runs much faster than others. */
127 while (QSORT_LT (_left_ptr, _mid))
130 while (QSORT_LT (_mid, _right_ptr))
133 if (_left_ptr < _right_ptr) {
134 _QSORT_SWAP (_left_ptr, _right_ptr, _hold);
135 if (_mid == _left_ptr)
137 else if (_mid == _right_ptr)
142 else if (_left_ptr == _right_ptr) {
147 } while (_left_ptr <= _right_ptr);
149 /* Set up pointers for next iteration. First determine whether
150 left and right partitions are below the threshold size. If so,
151 ignore one or both. Otherwise, push the larger partition's
152 bounds on the stack and continue sorting the smaller one. */
154 if (_right_ptr - _lo <= _QSORT_MAX_THRESH) {
155 if (_hi - _left_ptr <= _QSORT_MAX_THRESH)
156 /* Ignore both small partitions. */
157 _QSORT_POP (_lo, _hi, _top);
159 /* Ignore small left partition. */
162 else if (_hi - _left_ptr <= _QSORT_MAX_THRESH)
163 /* Ignore small right partition. */
165 else if (_right_ptr - _lo > _hi - _left_ptr) {
166 /* Push larger left partition indices. */
167 _QSORT_PUSH (_top, _lo, _right_ptr);
171 /* Push larger right partition indices. */
172 _QSORT_PUSH (_top, _left_ptr, _hi);
178 /* Once the BASE array is partially sorted by quicksort the rest
179 is completely sorted using insertion sort, since this is efficient
180 for partitions below MAX_THRESH size. BASE points to the
181 beginning of the array to sort, and END_PTR points at the very
182 last element in the array (*not* one beyond it!). */
186 QSORT_TYPE *const _end_ptr = _base + _elems - 1;
187 QSORT_TYPE *_tmp_ptr = _base;
188 register QSORT_TYPE *_run_ptr;
191 _thresh = _base + _QSORT_MAX_THRESH;
192 if (_thresh > _end_ptr)
195 /* Find smallest element in first threshold and place it at the
196 array's beginning. This is the smallest array element,
197 and the operation speeds up insertion sort's inner loop. */
199 for (_run_ptr = _tmp_ptr + 1; _run_ptr <= _thresh; ++_run_ptr)
200 if (QSORT_LT (_run_ptr, _tmp_ptr))
203 if (_tmp_ptr != _base)
204 _QSORT_SWAP (_tmp_ptr, _base, _hold);
206 /* Insertion sort, running from left-hand-side
207 * up to right-hand-side. */
209 _run_ptr = _base + 1;
210 while (++_run_ptr <= _end_ptr) {
211 _tmp_ptr = _run_ptr - 1;
212 while (QSORT_LT (_run_ptr, _tmp_ptr))
216 if (_tmp_ptr != _run_ptr) {
217 QSORT_TYPE *_trav = _run_ptr + 1;
218 while (--_trav >= _run_ptr) {
219 QSORT_TYPE *_hi, *_lo;
222 for (_hi = _lo = _trav; --_lo >= _tmp_ptr; _hi = _lo)