1 /* Extended regular expression matching and search library,
3 * (Implements POSIX draft P1003.2/D11.2, except for some of the
4 * internationalization features.)
6 * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
8 * This file is part of the GNU C Library. Its master source is NOT part of
9 * the C library, however. The master source lives in /gd/gnu/lib.
11 * The GNU C Library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Library General Public License as
13 * published by the Free Software Foundation; either version 2 of the
14 * License, or (at your option) any later version.
16 * The GNU C Library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Library General Public License for more details.
21 * You should have received a copy of the GNU Library General Public
22 * License along with the GNU C Library; see the file COPYING.LIB. If not,
23 * write to the Free Software Foundation, Inc., 51 Franklin Street,
24 * Fifth Floor, Boston, MA 02110-1301, USA.
30 * Use _regex.h instead of regex.h. tlr, 1999-01-06
31 * Make REGEX_MALLOC depend on HAVE_ALLOCA &c.
33 * Don't switch on regex debugging when debugging mutt.
37 /* The following doesn't mix too well with autoconfiguring
38 * the use of alloca. So let's disable it for AIX.
43 /* AIX requires this to be the first thing in the file. */
44 # if defined (_AIX) && !defined (REGEX_MALLOC)
59 #if (defined(HAVE_ALLOCA_H) && !defined(_AIX))
63 #if (!defined(HAVE_ALLOCA) || defined(_AIX))
67 #if defined(STDC_HEADERS) && !defined(emacs)
70 /* We need this for `regex.h', and perhaps for the Emacs include files. */
71 #include <sys/types.h>
74 /* For platform which support the ISO C amendement 1 functionality we
75 support user defined character classes. */
76 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
81 /* This is for other GNU distributions with internationalized messages. */
82 #if HAVE_LIBINTL_H || defined (_LIBC)
85 # define gettext(msgid) (msgid)
89 /* This define is so xgettext can find the internationalizable
91 #define gettext_noop(String) String
94 /* The `emacs' switch turns on certain matching commands
95 that make sense only in Emacs. */
103 #else /* not emacs */
105 /* If we are not linking with Emacs proper,
106 we can't use the relocating allocator
107 even if config.h says that we can. */
110 #if defined (STDC_HEADERS) || defined (_LIBC)
113 char *malloc (); /* __MEM_CHECKED__ */
114 char *realloc (); /* __MEM_CHECKED__ */
117 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
118 If nothing else has been done, use the method below. */
119 #ifdef INHIBIT_STRING_HEADER
120 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
121 #if !defined (bzero) && !defined (bcopy)
122 #undef INHIBIT_STRING_HEADER
127 /* This is the normal way of making sure we have a bcopy and a bzero.
128 This is used in most programs--a few other programs avoid this
129 by defining INHIBIT_STRING_HEADER. */
130 #ifndef INHIBIT_STRING_HEADER
131 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
134 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
137 #define bcopy(s, d, n) memcpy ((d), (s), (n))
140 #define bzero(s, n) memset ((s), 0, (n))
147 /* Define the syntax stuff for \<, \>, etc. */
149 /* This must be nonzero for the wordchar and notwordchar pattern
150 commands in re_match_2. */
155 #ifdef SWITCH_ENUM_BUG
156 #define SWITCH_ENUM_CAST(x) ((int)(x))
158 #define SWITCH_ENUM_CAST(x) (x)
163 extern char *re_syntax_table;
165 #else /* not SYNTAX_TABLE */
167 /* How many characters in the character set. */
168 #define CHAR_SET_SIZE 256
170 static char re_syntax_table[CHAR_SET_SIZE];
173 1, MUTT_ALPHA, MUTT_BLANK, MUTT_CNTRL, MUTT_DIGIT, MUTT_GRAPH,
174 MUTT_LOWER, MUTT_PRINT, MUTT_PUNCT, MUTT_SPACE, MUTT_UPPER, MUTT_XDIGIT,
178 static int ctype (const char *name)
180 if (0 == strcmp (name, "alnum"))
182 if (0 == strcmp (name, "alpha"))
184 if (0 == strcmp (name, "blank"))
186 if (0 == strcmp (name, "cntrl"))
188 if (0 == strcmp (name, "digit"))
190 if (0 == strcmp (name, "graph"))
192 if (0 == strcmp (name, "lower"))
194 if (0 == strcmp (name, "print"))
196 if (0 == strcmp (name, "punct"))
198 if (0 == strcmp (name, "space"))
200 if (0 == strcmp (name, "upper"))
202 if (0 == strcmp (name, "xdigit"))
208 static void init_syntax_once ()
216 bzero (re_syntax_table, sizeof re_syntax_table);
218 for (c = 'a'; c <= 'z'; c++)
219 re_syntax_table[c] = Sword;
221 for (c = 'A'; c <= 'Z'; c++)
222 re_syntax_table[c] = Sword;
224 for (c = '0'; c <= '9'; c++)
225 re_syntax_table[c] = Sword;
227 re_syntax_table['_'] = Sword;
232 #endif /* not SYNTAX_TABLE */
234 #define SYNTAX(c) re_syntax_table[c]
236 #endif /* not emacs */
238 /* Get the interface, including the syntax bits. */
240 /* Changed to fit into mutt - tlr, 1999-01-06 */
244 /* isalpha etc. are used for the character classes. */
247 /* Jim Meyering writes:
249 "... Some ctype macros are valid only for character codes that
250 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
251 using /bin/cc or gcc but without giving an ansi option). So, all
252 ctype uses should be through macros like ISPRINT... If
253 STDC_HEADERS is defined, then autoconf has verified that the ctype
254 macros don't need to be guarded with references to isascii. ...
255 Defining isascii to 1 should let any compiler worth its salt
256 eliminate the && through constant folding." */
258 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
261 #define ISASCII(c) isascii(c)
265 #define ISBLANK(c) (ISASCII (c) && isblank (c))
267 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
270 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
272 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
275 #define ISPRINT(c) (ISASCII (c) && isprint (c))
276 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
277 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
278 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
279 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
280 #define ISLOWER(c) (ISASCII (c) && islower (c))
281 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
282 #define ISSPACE(c) (ISASCII (c) && isspace (c))
283 #define ISUPPER(c) (ISASCII (c) && isupper (c))
284 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
287 #define NULL (void *)0
290 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
291 since ours (we hope) works properly with all combinations of
292 machines, compilers, `char' and `unsigned char' argument types.
293 (Per Bothner suggested the basic approach.) */
294 #undef SIGN_EXTEND_CHAR
296 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
297 #else /* not __STDC__ */
298 /* As in Harbison and Steele. */
299 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
302 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
303 use `alloca' instead of `malloc'. This is because using malloc in
304 re_search* or re_match* could cause memory leaks when C-g is used in
305 Emacs; also, malloc is slower and causes storage fragmentation. On
306 the other hand, malloc is more portable, and easier to debug.
308 Because we sometimes use alloca, some routines have to be macros,
309 not functions -- `alloca'-allocated space disappears at the end of the
310 function it is called in. */
314 #define REGEX_ALLOCATE malloc
315 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
316 #define REGEX_mem_free free
318 #else /* not REGEX_MALLOC */
320 /* Emacs already defines alloca, sometimes. */
323 /* Make alloca work the best possible way. */
325 #define alloca __builtin_alloca
326 #else /* not __GNUC__ */
329 #else /* not __GNUC__ or HAVE_ALLOCA_H */
330 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */
331 #ifndef _AIX /* Already did AIX, up at the top. */
333 #endif /* not _AIX */
335 #endif /* not HAVE_ALLOCA_H */
336 #endif /* not __GNUC__ */
338 #endif /* not alloca */
340 #define REGEX_ALLOCATE alloca
342 /* Assumes a `char *destination' variable. */
343 #define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 bcopy (source, destination, osize), \
348 /* No need to do anything to free, after alloca. */
349 #define REGEX_mem_free(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
351 #endif /* not REGEX_MALLOC */
353 /* Define how to allocate the failure stack. */
355 #if defined (REL_ALLOC) && defined (REGEX_MALLOC)
357 #define REGEX_ALLOCATE_STACK(size) \
358 r_alloc (&failure_stack_ptr, (size))
359 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
360 r_re_alloc (&failure_stack_ptr, (nsize))
361 #define REGEX_mem_free_STACK(ptr) \
362 r_alloc_free (&failure_stack_ptr)
364 #else /* not using relocating allocator */
368 #define REGEX_ALLOCATE_STACK malloc
369 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
370 #define REGEX_mem_free_STACK free
372 #else /* not REGEX_MALLOC */
374 #define REGEX_ALLOCATE_STACK alloca
376 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \
377 REGEX_REALLOCATE (source, osize, nsize)
378 /* No need to explicitly free anything. */
379 #define REGEX_mem_free_STACK(arg)
381 #endif /* not REGEX_MALLOC */
382 #endif /* not using relocating allocator */
385 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
386 `string1' or just past its end. This works if PTR is NULL, which is
388 #define FIRST_STRING_P(ptr) \
389 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
391 /* (Re)Allocate N items of type T using malloc, or fail. */
392 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
393 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
394 #define RETALLOC_IF(addr, n, t) \
395 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
396 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
398 #define BYTEWIDTH 8 /* In bits. */
400 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
404 #define MAX(a, b) ((a) > (b) ? (a) : (b))
405 #define MIN(a, b) ((a) < (b) ? (a) : (b))
407 typedef char boolean;
412 static int re_match_2_internal ();
414 /* These are the command codes that appear in compiled regular
415 expressions. Some opcodes are followed by argument bytes. A
416 command code can specify any interpretation whatsoever for its
417 arguments. Zero bytes may appear in the compiled regular expression. */
422 /* Succeed right away--no more backtracking. */
425 /* Followed by one byte giving n, then by n literal bytes. */
428 /* Matches any (more or less) character. */
431 /* Matches any one char belonging to specified set. First
432 following byte is number of bitmap bytes. Then come bytes
433 for a bitmap saying which chars are in. Bits in each byte
434 are ordered low-bit-first. A character is in the set if its
435 bit is 1. A character too large to have a bit in the map is
436 automatically not in the set. */
439 /* Same parameters as charset, but match any character that is
440 not one of those specified. */
443 /* Start remembering the text that is matched, for storing in a
444 register. Followed by one byte with the register number, in
445 the range 0 to one less than the pattern buffer's re_nsub
446 field. Then followed by one byte with the number of groups
447 inner to this one. (This last has to be part of the
448 start_memory only because we need it in the on_failure_jump
452 /* Stop remembering the text that is matched and store it in a
453 memory register. Followed by one byte with the register
454 number, in the range 0 to one less than `re_nsub' in the
455 pattern buffer, and one byte with the number of inner groups,
456 just like `start_memory'. (We need the number of inner
457 groups here because we don't have any easy way of finding the
458 corresponding start_memory when we're at a stop_memory.) */
461 /* Match a duplicate of something remembered. Followed by one
462 byte containing the register number. */
465 /* Fail unless at beginning of line. */
468 /* Fail unless at end of line. */
471 /* Succeeds if at beginning of buffer (if emacs) or at beginning
472 of string to be matched (if not). */
475 /* Analogously, for end of buffer/string. */
478 /* Followed by two byte relative address to which to jump. */
481 /* Same as jump, but marks the end of an alternative. */
484 /* Followed by two-byte relative address of place to resume at
485 in case of failure. */
488 /* Like on_failure_jump, but pushes a placeholder instead of the
489 current string position when executed. */
490 on_failure_keep_string_jump,
492 /* Throw away latest failure point and then jump to following
493 two-byte relative address. */
496 /* Change to pop_failure_jump if know won't have to backtrack to
497 match; otherwise change to jump. This is used to jump
498 back to the beginning of a repeat. If what follows this jump
499 clearly won't match what the repeat does, such that we can be
500 sure that there is no use backtracking out of repetitions
501 already matched, then we change it to a pop_failure_jump.
502 Followed by two-byte address. */
505 /* Jump to following two-byte address, and push a dummy failure
506 point. This failure point will be thrown away if an attempt
507 is made to use it for a failure. A `+' construct makes this
508 before the first repeat. Also used as an intermediary kind
509 of jump when compiling an alternative. */
512 /* Push a dummy failure point and continue. Used at the end of
516 /* Followed by two-byte relative address and two-byte number n.
517 After matching N times, jump to the address upon failure. */
520 /* Followed by two-byte relative address, and two-byte number n.
521 Jump to the address N times, then fail. */
524 /* Set the following two-byte relative address to the
525 subsequent two-byte number. The address *includes* the two
529 wordchar, /* Matches any word-constituent character. */
530 notwordchar, /* Matches any char that is not a word-constituent. */
532 wordbeg, /* Succeeds if at word beginning. */
533 wordend, /* Succeeds if at word end. */
535 wordbound, /* Succeeds if at a word boundary. */
536 notwordbound /* Succeeds if not at a word boundary. */
538 , before_dot, /* Succeeds if before point. */
539 at_dot, /* Succeeds if at point. */
540 after_dot, /* Succeeds if after point. */
542 /* Matches any character whose syntax is specified. Followed by
543 a byte which contains a syntax code, e.g., Sword. */
546 /* Matches any character whose syntax is not that specified. */
551 /* Common operations on the compiled pattern. */
553 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
555 #define STORE_NUMBER(destination, number) \
557 (destination)[0] = (number) & 0377; \
558 (destination)[1] = (number) >> 8; \
561 /* Same as STORE_NUMBER, except increment DESTINATION to
562 the byte after where the number is stored. Therefore, DESTINATION
563 must be an lvalue. */
565 #define STORE_NUMBER_AND_INCR(destination, number) \
567 STORE_NUMBER (destination, number); \
568 (destination) += 2; \
571 /* Put into DESTINATION a number stored in two contiguous bytes starting
574 #define EXTRACT_NUMBER(destination, source) \
576 (destination) = *(source) & 0377; \
577 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
581 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
582 static void extract_number (dest, source)
584 unsigned char *source;
586 int temp = SIGN_EXTEND_CHAR (*(source + 1));
588 *dest = *source & 0377;
592 #ifndef EXTRACT_MACROS /* To debug the macros. */
593 #undef EXTRACT_NUMBER
594 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
595 #endif /* not EXTRACT_MACROS */
599 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
600 SOURCE must be an lvalue. */
602 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
604 EXTRACT_NUMBER (destination, source); \
609 static void extract_number_and_incr _RE_ARGS ((int *destination,
610 unsigned char **source));
611 static void extract_number_and_incr (destination, source)
613 unsigned char **source;
615 extract_number (destination, *source);
619 #ifndef EXTRACT_MACROS
620 #undef EXTRACT_NUMBER_AND_INCR
621 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
622 extract_number_and_incr (&dest, &src)
623 #endif /* not EXTRACT_MACROS */
627 /* If DEBUG is defined, Regex prints many voluminous messages about what
628 it is doing (if the variable `debug' is nonzero). If linked with the
629 main program in `iregex.c', you can enter patterns and strings
630 interactively. And if linked with the main program in `main.c' and
631 the other test files, you can run the already-written tests. */
635 /* We use standard I/O for debugging. */
638 /* It is useful to test things that ``must'' be true when debugging. */
641 static int debug = 0;
643 #define DEBUG_STATEMENT(e) e
644 #define DEBUG_PRINT1(x) if (debug) printf (x)
645 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
646 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
647 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
648 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
649 if (debug) print_partial_compiled_pattern (s, e)
650 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
651 if (debug) print_double_string (w, s1, sz1, s2, sz2)
654 /* Print the fastmap in human-readable form. */
656 void print_fastmap (fastmap)
659 unsigned was_a_range = 0;
662 while (i < (1 << BYTEWIDTH)) {
666 while (i < (1 << BYTEWIDTH) && fastmap[i]) {
680 /* Print a compiled pattern string in human-readable form, starting at
681 the START pointer into it and ending just before the pointer END. */
683 void print_partial_compiled_pattern (start, end)
684 unsigned char *start;
689 unsigned char *p = start;
690 unsigned char *pend = end;
697 /* Loop over pattern commands. */
699 printf ("%d:\t", p - start);
701 switch ((re_opcode_t) * p++) {
708 printf ("/exactn/%d", mcnt);
718 printf ("/start_memory/%d/%d", mcnt, *p++);
723 printf ("/stop_memory/%d/%d", mcnt, *p++);
727 printf ("/duplicate/%d", *p++);
737 register int c, last = -100;
738 register int in_range = 0;
740 printf ("/charset [%s",
741 (re_opcode_t) * (p - 1) == charset_not ? "^" : "");
743 assert (p + *p < pend);
745 for (c = 0; c < 256; c++)
746 if (c / 8 < *p && (p[1 + (c / 8)] & (1 << (c % 8)))) {
747 /* Are we starting a range? */
748 if (last + 1 == c && !in_range) {
752 /* Have we broken a range? */
753 else if (last + 1 != c && in_range) {
781 case on_failure_jump:
782 extract_number_and_incr (&mcnt, &p);
783 printf ("/on_failure_jump to %d", p + mcnt - start);
786 case on_failure_keep_string_jump:
787 extract_number_and_incr (&mcnt, &p);
788 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
791 case dummy_failure_jump:
792 extract_number_and_incr (&mcnt, &p);
793 printf ("/dummy_failure_jump to %d", p + mcnt - start);
796 case push_dummy_failure:
797 printf ("/push_dummy_failure");
801 extract_number_and_incr (&mcnt, &p);
802 printf ("/maybe_pop_jump to %d", p + mcnt - start);
805 case pop_failure_jump:
806 extract_number_and_incr (&mcnt, &p);
807 printf ("/pop_failure_jump to %d", p + mcnt - start);
811 extract_number_and_incr (&mcnt, &p);
812 printf ("/jump_past_alt to %d", p + mcnt - start);
816 extract_number_and_incr (&mcnt, &p);
817 printf ("/jump to %d", p + mcnt - start);
821 extract_number_and_incr (&mcnt, &p);
823 extract_number_and_incr (&mcnt2, &p);
824 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
828 extract_number_and_incr (&mcnt, &p);
830 extract_number_and_incr (&mcnt2, &p);
831 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
835 extract_number_and_incr (&mcnt, &p);
837 extract_number_and_incr (&mcnt2, &p);
838 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
842 printf ("/wordbound");
846 printf ("/notwordbound");
858 printf ("/before_dot");
866 printf ("/after_dot");
870 printf ("/syntaxspec");
872 printf ("/%d", mcnt);
876 printf ("/notsyntaxspec");
878 printf ("/%d", mcnt);
883 printf ("/wordchar");
887 printf ("/notwordchar");
899 printf ("?%d", *(p - 1));
905 printf ("%d:\tend of pattern.\n", p - start);
909 void print_compiled_pattern (bufp)
910 struct re_pattern_buffer *bufp;
912 unsigned char *buffer = bufp->buffer;
914 print_partial_compiled_pattern (buffer, buffer + bufp->used);
915 printf ("%ld bytes used/%ld bytes allocated.\n",
916 bufp->used, bufp->allocated);
918 if (bufp->fastmap_accurate && bufp->fastmap) {
919 printf ("fastmap: ");
920 print_fastmap (bufp->fastmap);
923 printf ("re_nsub: %d\t", bufp->re_nsub);
924 printf ("regs_alloc: %d\t", bufp->regs_allocated);
925 printf ("can_be_null: %d\t", bufp->can_be_null);
926 printf ("newline_anchor: %d\n", bufp->newline_anchor);
927 printf ("no_sub: %d\t", bufp->no_sub);
928 printf ("not_bol: %d\t", bufp->not_bol);
929 printf ("not_eol: %d\t", bufp->not_eol);
930 printf ("syntax: %lx\n", bufp->syntax);
931 /* Perhaps we should print the translate table? */
935 void print_double_string (where, string1, size1, string2, size2)
947 if (FIRST_STRING_P (where)) {
948 for (this_char = where - string1; this_char < size1; this_char++)
949 putchar (string1[this_char]);
954 for (this_char = where - string2; this_char < size2; this_char++)
955 putchar (string2[this_char]);
965 #else /* not DEBUG */
970 #define DEBUG_STATEMENT(e)
971 #define DEBUG_PRINT1(x)
972 #define DEBUG_PRINT2(x1, x2)
973 #define DEBUG_PRINT3(x1, x2, x3)
974 #define DEBUG_PRINT4(x1, x2, x3, x4)
975 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
976 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
978 #endif /* not DEBUG */
980 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
981 also be assigned to arbitrarily: each pattern buffer stores its own
982 syntax, so it can be changed between regex compilations. */
983 /* This has no initializer because initialized variables in Emacs
984 become read-only after dumping. */
985 reg_syntax_t re_syntax_options;
988 /* Specify the precise syntax of regexps for compilation. This provides
989 for compatibility for various utilities which historically have
990 different, incompatible syntaxes.
992 The argument SYNTAX is a bit mask comprised of the various bits
993 defined in regex.h. We return the old syntax. */
995 reg_syntax_t re_set_syntax (syntax)
998 reg_syntax_t ret = re_syntax_options;
1000 re_syntax_options = syntax;
1002 if (syntax & RE_DEBUG)
1004 else if (debug) /* was on but now is not */
1010 /* This table gives an error message for each of the error codes listed
1011 in regex.h. Obviously the order here has to be same as there.
1012 POSIX doesn't require that we do anything for REG_NOERROR,
1013 but why not be nice? */
1015 static const char *re_error_msgid[] = {
1016 gettext_noop ("Success"), /* REG_NOERROR */
1017 gettext_noop ("No match"), /* REG_NOMATCH */
1018 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1019 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1020 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1021 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1022 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1023 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1024 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1025 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1026 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1027 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1028 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1029 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1030 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1031 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1032 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1035 /* Avoiding alloca during matching, to placate r_alloc. */
1037 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1038 searching and matching functions should not call alloca. On some
1039 systems, alloca is implemented in terms of malloc, and if we're
1040 using the relocating allocator routines, then malloc could cause a
1041 relocation, which might (if the strings being searched are in the
1042 ralloc heap) shift the data out from underneath the regexp
1045 Here's another reason to avoid allocation: Emacs
1046 processes input from X in a signal handler; processing X input may
1047 call malloc; if input arrives while a matching routine is calling
1048 malloc, then we're scrod. But Emacs can't just block input while
1049 calling matching routines; then we don't notice interrupts when
1050 they come in. So, Emacs blocks input around all regexp calls
1051 except the matching calls, which it leaves unprotected, in the
1052 faith that they will not malloc. */
1054 /* Normally, this is fine. */
1055 #define MATCH_MAY_ALLOCATE
1057 /* When using GNU C, we are not REALLY using the C alloca, no matter
1058 what config.h may say. So don't take precautions for it. */
1063 /* The match routines may not allocate if (1) they would do it with malloc
1064 and (2) it's not safe for them to use malloc.
1065 Note that if REL_ALLOC is defined, matching would not use malloc for the
1066 failure stack, but we would still use it for the register vectors;
1067 so REL_ALLOC should not affect this. */
1068 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
1069 #undef MATCH_MAY_ALLOCATE
1073 /* Failure stack declarations and macros; both re_compile_fastmap and
1074 re_match_2 use a failure stack. These have to be macros because of
1075 REGEX_ALLOCATE_STACK. */
1078 /* Number of failure points for which to initially allocate space
1079 when matching. If this number is exceeded, we allocate more
1080 space, so it is not a hard limit. */
1081 #ifndef INIT_FAILURE_ALLOC
1082 #define INIT_FAILURE_ALLOC 5
1085 /* Roughly the maximum number of failure points on the stack. Would be
1086 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1087 This is a variable only so users of regex can assign to it; we never
1088 change it ourselves. */
1092 #if defined (MATCH_MAY_ALLOCATE)
1093 /* 4400 was enough to cause a crash on Alpha OSF/1,
1094 whose default stack limit is 2mb. */
1095 long int re_max_failures = 4000;
1097 long int re_max_failures = 2000;
1100 union fail_stack_elt {
1101 unsigned char *pointer;
1105 typedef union fail_stack_elt fail_stack_elt_t;
1108 fail_stack_elt_t *stack;
1109 unsigned long int size;
1110 unsigned long int avail; /* Offset of next open position. */
1113 #else /* not INT_IS_16BIT */
1115 #if defined (MATCH_MAY_ALLOCATE)
1116 /* 4400 was enough to cause a crash on Alpha OSF/1,
1117 whose default stack limit is 2mb. */
1118 int re_max_failures = 20000;
1120 int re_max_failures = 2000;
1123 union fail_stack_elt {
1124 unsigned char *pointer;
1128 typedef union fail_stack_elt fail_stack_elt_t;
1131 fail_stack_elt_t *stack;
1133 unsigned avail; /* Offset of next open position. */
1136 #endif /* INT_IS_16BIT */
1138 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1139 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1140 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1143 /* Define macros to initialize and free the failure stack.
1144 Do `return -2' if the alloc fails. */
1146 #ifdef MATCH_MAY_ALLOCATE
1147 #define INIT_FAIL_STACK() \
1149 fail_stack.stack = (fail_stack_elt_t *) \
1150 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1152 if (fail_stack.stack == NULL) \
1155 fail_stack.size = INIT_FAILURE_ALLOC; \
1156 fail_stack.avail = 0; \
1159 #define RESET_FAIL_STACK() REGEX_mem_free_STACK (fail_stack.stack)
1161 #define INIT_FAIL_STACK() \
1163 fail_stack.avail = 0; \
1166 #define RESET_FAIL_STACK()
1170 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1172 Return 1 if succeeds, and 0 if either ran out of memory
1173 allocating space for it or it was already too large.
1175 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1177 #define DOUBLE_FAIL_STACK(fail_stack) \
1178 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1180 : ((fail_stack).stack = (fail_stack_elt_t *) \
1181 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1182 (fail_stack).size * sizeof (fail_stack_elt_t), \
1183 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1185 (fail_stack).stack == NULL \
1187 : ((fail_stack).size <<= 1, \
1191 /* Push pointer POINTER on FAIL_STACK.
1192 Return 1 if was able to do so and 0 if ran out of memory allocating
1194 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1195 ((FAIL_STACK_FULL () \
1196 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1198 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1201 /* Push a pointer value onto the failure stack.
1202 Assumes the variable `fail_stack'. Probably should only
1203 be called from within `PUSH_FAILURE_POINT'. */
1204 #define PUSH_FAILURE_POINTER(item) \
1205 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1207 /* This pushes an integer-valued item onto the failure stack.
1208 Assumes the variable `fail_stack'. Probably should only
1209 be called from within `PUSH_FAILURE_POINT'. */
1210 #define PUSH_FAILURE_INT(item) \
1211 fail_stack.stack[fail_stack.avail++].integer = (item)
1213 /* Push a fail_stack_elt_t value onto the failure stack.
1214 Assumes the variable `fail_stack'. Probably should only
1215 be called from within `PUSH_FAILURE_POINT'. */
1216 #define PUSH_FAILURE_ELT(item) \
1217 fail_stack.stack[fail_stack.avail++] = (item)
1219 /* These three POP... operations complement the three PUSH... operations.
1220 All assume that `fail_stack' is nonempty. */
1221 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1222 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1223 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1225 /* Used to omit pushing failure point id's when we're not debugging. */
1227 #define DEBUG_PUSH PUSH_FAILURE_INT
1228 #define DEBUG_POP(item_addr) (item_addr)->integer = POP_FAILURE_INT ()
1230 #define DEBUG_PUSH(item)
1231 #define DEBUG_POP(item_addr)
1235 /* Push the information about the state we will need
1236 if we ever fail back to it.
1238 Requires variables fail_stack, regstart, regend, reg_info, and
1239 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1242 Does `return FAILURE_CODE' if runs out of memory. */
1244 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1246 char *destination; \
1247 /* Must be int, so when we don't save any registers, the arithmetic \
1248 of 0 + -1 isn't done as unsigned. */ \
1249 /* Can't be int, since there is not a shred of a guarantee that int \
1250 is wide enough to hold a value of something to which pointer can \
1254 DEBUG_STATEMENT (failure_id++); \
1255 DEBUG_STATEMENT (nfailure_points_pushed++); \
1256 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1257 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1258 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1260 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1261 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1263 /* Ensure we have enough space allocated for what we will push. */ \
1264 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1266 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1267 return failure_code; \
1269 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1270 (fail_stack).size); \
1271 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1274 /* Push the info, starting with the registers. */ \
1275 DEBUG_PRINT1 ("\n"); \
1278 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1281 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1282 DEBUG_STATEMENT (num_regs_pushed++); \
1284 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1285 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1287 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1288 PUSH_FAILURE_POINTER (regend[this_reg]); \
1290 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1291 DEBUG_PRINT2 (" match_null=%d", \
1292 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1293 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1294 DEBUG_PRINT2 (" matched_something=%d", \
1295 MATCHED_SOMETHING (reg_info[this_reg])); \
1296 DEBUG_PRINT2 (" ever_matched=%d", \
1297 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1298 DEBUG_PRINT1 ("\n"); \
1299 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1302 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1303 PUSH_FAILURE_INT (lowest_active_reg); \
1305 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1306 PUSH_FAILURE_INT (highest_active_reg); \
1308 DEBUG_PRINT2 (" Pushing pattern 0x%x:\n", pattern_place); \
1309 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1310 PUSH_FAILURE_POINTER (pattern_place); \
1312 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1313 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1315 DEBUG_PRINT1 ("'\n"); \
1316 PUSH_FAILURE_POINTER (string_place); \
1318 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1319 DEBUG_PUSH (failure_id); \
1322 /* This is the number of items that are pushed and popped on the stack
1323 for each register. */
1324 #define NUM_REG_ITEMS 3
1326 /* Individual items aside from the registers. */
1328 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1330 #define NUM_NONREG_ITEMS 4
1333 /* We push at most this many items on the stack. */
1334 /* We used to use (num_regs - 1), which is the number of registers
1335 this regexp will save; but that was changed to 5
1336 to avoid stack overflow for a regexp with lots of parens. */
1337 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1339 /* We actually push this many items. */
1340 #define NUM_FAILURE_ITEMS \
1342 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1346 /* How many items can still be added to the stack without overflowing it. */
1347 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1350 /* Pops what PUSH_FAIL_STACK pushes.
1352 We restore into the parameters, all of which should be lvalues:
1353 STR -- the saved data position.
1354 PAT -- the saved pattern position.
1355 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1356 REGSTART, REGEND -- arrays of string positions.
1357 REG_INFO -- array of information about each subexpression.
1359 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1360 `pend', `string1', `size1', `string2', and `size2'. */
1362 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1364 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1366 const unsigned char *string_temp; \
1368 assert (!FAIL_STACK_EMPTY ()); \
1370 /* Remove failure points and point to how many regs pushed. */ \
1371 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1372 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1373 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1375 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1377 DEBUG_POP (&failure_id); \
1378 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1380 /* If the saved string location is NULL, it came from an \
1381 on_failure_keep_string_jump opcode, and we want to throw away the \
1382 saved NULL, thus retaining our current position in the string. */ \
1383 string_temp = POP_FAILURE_POINTER (); \
1384 if (string_temp != NULL) \
1385 str = (const char *) string_temp; \
1387 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1388 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1389 DEBUG_PRINT1 ("'\n"); \
1391 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1392 DEBUG_PRINT2 (" Popping pattern 0x%x:\n", pat); \
1393 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1395 /* Restore register info. */ \
1396 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1397 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1399 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1400 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1403 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1405 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1407 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1408 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1410 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1411 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1413 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1414 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1418 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1420 reg_info[this_reg].word.integer = 0; \
1421 regend[this_reg] = 0; \
1422 regstart[this_reg] = 0; \
1424 highest_active_reg = high_reg; \
1427 set_regs_matched_done = 0; \
1428 DEBUG_STATEMENT (nfailure_points_popped++); \
1429 } /* POP_FAILURE_POINT */
1433 /* Structure for per-register (a.k.a. per-group) information.
1434 Other register information, such as the
1435 starting and ending positions (which are addresses), and the list of
1436 inner groups (which is a bits list) are maintained in separate
1439 We are making a (strictly speaking) nonportable assumption here: that
1440 the compiler will pack our bit fields into something that fits into
1441 the type of `word', i.e., is something that fits into one item on the
1445 /* Declarations and macros for re_match_2. */
1448 fail_stack_elt_t word;
1450 /* This field is one if this group can match the empty string,
1451 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1452 #define MATCH_NULL_UNSET_VALUE 3
1453 unsigned match_null_string_p:2;
1454 unsigned is_active:1;
1455 unsigned matched_something:1;
1456 unsigned ever_matched_something:1;
1458 } register_info_type;
1460 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1461 #define IS_ACTIVE(R) ((R).bits.is_active)
1462 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1463 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1466 /* Call this when have matched a real character; it sets `matched' flags
1467 for the subexpressions which we are currently inside. Also records
1468 that those subexprs have matched. */
1469 #define SET_REGS_MATCHED() \
1472 if (!set_regs_matched_done) \
1475 set_regs_matched_done = 1; \
1476 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1478 MATCHED_SOMETHING (reg_info[r]) \
1479 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1486 /* Registers are set to a sentinel when they haven't yet matched. */
1487 static char reg_unset_dummy;
1489 #define REG_UNSET_VALUE (®_unset_dummy)
1490 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1492 /* Subroutine declarations and macros for regex_compile. */
1494 static reg_errcode_t regex_compile
1495 _RE_ARGS ((const char *pattern, size_t size, reg_syntax_t syntax,
1496 struct re_pattern_buffer * bufp));
1497 static void store_op1
1498 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1499 static void store_op2
1500 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg1, int arg2));
1501 static void insert_op1
1502 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg, unsigned char *end));
1503 static void insert_op2
1504 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg1, int arg2,
1505 unsigned char *end));
1506 static boolean at_begline_loc_p
1507 _RE_ARGS ((const char *pattern, const char *p, reg_syntax_t syntax));
1508 static boolean at_endline_loc_p
1509 _RE_ARGS ((const char *p, const char *pend, reg_syntax_t syntax));
1510 static reg_errcode_t compile_range
1511 _RE_ARGS ((const char **p_ptr, const char *pend, char *translate,
1512 reg_syntax_t syntax, unsigned char *b));
1514 /* Fetch the next character in the uncompiled pattern---translating it
1515 if necessary. Also cast from a signed character in the constant
1516 string passed to us by the user to an unsigned char that we can use
1517 as an array index (in, e.g., `translate'). */
1519 #define PATFETCH(c) \
1520 do {if (p == pend) return REG_EEND; \
1521 c = (unsigned char) *p++; \
1522 if (translate) c = (unsigned char) translate[c]; \
1526 /* Fetch the next character in the uncompiled pattern, with no
1528 #define PATFETCH_RAW(c) \
1529 do {if (p == pend) return REG_EEND; \
1530 c = (unsigned char) *p++; \
1533 /* Go backwards one character in the pattern. */
1534 #define PATUNFETCH p--
1537 /* If `translate' is non-null, return translate[D], else just D. We
1538 cast the subscript to translate because some data is declared as
1539 `char *', to avoid warnings when a string constant is passed. But
1540 when we use a character as a subscript we must make it unsigned. */
1542 #define TRANSLATE(d) \
1543 (translate ? (char) translate[(unsigned char) (d)] : (d))
1547 /* Macros for outputting the compiled pattern into `buffer'. */
1549 /* If the buffer isn't allocated when it comes in, use this. */
1550 #define INIT_BUF_SIZE 32
1552 /* Make sure we have at least N more bytes of space in buffer. */
1553 #define GET_BUFFER_SPACE(n) \
1554 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1557 /* Make sure we have one more byte of buffer space and then add C to it. */
1558 #define BUF_PUSH(c) \
1560 GET_BUFFER_SPACE (1); \
1561 *b++ = (unsigned char) (c); \
1565 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1566 #define BUF_PUSH_2(c1, c2) \
1568 GET_BUFFER_SPACE (2); \
1569 *b++ = (unsigned char) (c1); \
1570 *b++ = (unsigned char) (c2); \
1574 /* As with BUF_PUSH_2, except for three bytes. */
1575 #define BUF_PUSH_3(c1, c2, c3) \
1577 GET_BUFFER_SPACE (3); \
1578 *b++ = (unsigned char) (c1); \
1579 *b++ = (unsigned char) (c2); \
1580 *b++ = (unsigned char) (c3); \
1584 /* Store a jump with opcode OP at LOC to location TO. We store a
1585 relative address offset by the three bytes the jump itself occupies. */
1586 #define STORE_JUMP(op, loc, to) \
1587 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1589 /* Likewise, for a two-argument jump. */
1590 #define STORE_JUMP2(op, loc, to, arg) \
1591 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1593 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1594 #define INSERT_JUMP(op, loc, to) \
1595 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1597 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1598 #define INSERT_JUMP2(op, loc, to, arg) \
1599 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1602 /* This is not an arbitrary limit: the arguments which represent offsets
1603 into the pattern are two bytes long. So if 2^16 bytes turns out to
1604 be too small, many things would have to change. */
1605 /* Any other compiler which, like MSC, has allocation limit below 2^16
1606 bytes will have to use approach similar to what was done below for
1607 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1608 reallocating to 0 bytes. Such thing is not going to work too well.
1609 You have been warned!! */
1610 #if defined(_MSC_VER) && !defined(WIN32)
1611 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1612 The REALLOC define eliminates a flurry of conversion warnings,
1613 but is not required. */
1614 #define MAX_BUF_SIZE 65500L
1615 #define REALLOC(p,s) realloc ((p), (size_t) (s))
1617 #define MAX_BUF_SIZE (1L << 16)
1618 #define REALLOC(p,s) realloc ((p), (s))
1621 /* Extend the buffer by twice its current size via realloc and
1622 reset the pointers that pointed into the old block to point to the
1623 correct places in the new one. If extending the buffer results in it
1624 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1625 #define EXTEND_BUFFER() \
1627 unsigned char *old_buffer = bufp->buffer; \
1628 if (bufp->allocated == MAX_BUF_SIZE) \
1630 bufp->allocated <<= 1; \
1631 if (bufp->allocated > MAX_BUF_SIZE) \
1632 bufp->allocated = MAX_BUF_SIZE; \
1633 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1634 if (bufp->buffer == NULL) \
1635 return REG_ESPACE; \
1636 /* If the buffer moved, move all the pointers into it. */ \
1637 if (old_buffer != bufp->buffer) \
1639 b = (b - old_buffer) + bufp->buffer; \
1640 begalt = (begalt - old_buffer) + bufp->buffer; \
1641 if (fixup_alt_jump) \
1642 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1644 laststart = (laststart - old_buffer) + bufp->buffer; \
1645 if (pending_exact) \
1646 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1651 /* Since we have one byte reserved for the register number argument to
1652 {start,stop}_memory, the maximum number of groups we can report
1653 things about is what fits in that byte. */
1654 #define MAX_REGNUM 255
1656 /* But patterns can have more than `MAX_REGNUM' registers. We just
1657 ignore the excess. */
1658 typedef unsigned regnum_t;
1661 /* Macros for the compile stack. */
1663 /* Since offsets can go either forwards or backwards, this type needs to
1664 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1665 /* int may be not enough when sizeof(int) == 2. */
1666 typedef long pattern_offset_t;
1669 pattern_offset_t begalt_offset;
1670 pattern_offset_t fixup_alt_jump;
1671 pattern_offset_t inner_group_offset;
1672 pattern_offset_t laststart_offset;
1674 } compile_stack_elt_t;
1678 compile_stack_elt_t *stack;
1680 unsigned avail; /* Offset of next open position. */
1681 } compile_stack_type;
1684 #define INIT_COMPILE_STACK_SIZE 32
1686 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1687 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1689 /* The next available element. */
1690 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1693 /* Set the bit for character C in a list. */
1694 #define SET_LIST_BIT(c) \
1695 (b[((unsigned char) (c)) / BYTEWIDTH] \
1696 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1699 /* Get the next unsigned number in the uncompiled pattern. */
1700 #define GET_UNSIGNED_NUMBER(num) \
1704 while (ISDIGIT (c)) \
1708 num = num * 10 + c - '0'; \
1716 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1717 /* The GNU C library provides support for user-defined character classes
1718 and the functions from ISO C amendement 1. */
1719 # ifdef CHARCLASS_NAME_MAX
1720 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1722 /* This shouldn't happen but some implementation might still have this
1723 problem. Use a reasonable default value. */
1724 # define CHAR_CLASS_MAX_LENGTH 256
1727 # define IS_CHAR_CLASS(string) wctype (string)
1729 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1731 # define IS_CHAR_CLASS(string) \
1732 (STREQ (string, "alpha") || STREQ (string, "upper") \
1733 || STREQ (string, "lower") || STREQ (string, "digit") \
1734 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1735 || STREQ (string, "space") || STREQ (string, "print") \
1736 || STREQ (string, "punct") || STREQ (string, "graph") \
1737 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1740 #ifndef MATCH_MAY_ALLOCATE
1742 /* If we cannot allocate large objects within re_match_2_internal,
1743 we make the fail stack and register vectors global.
1744 The fail stack, we grow to the maximum size when a regexp
1746 The register vectors, we adjust in size each time we
1747 compile a regexp, according to the number of registers it needs. */
1749 static fail_stack_type fail_stack;
1751 /* Size with which the following vectors are currently allocated.
1752 That is so we can make them bigger as needed,
1753 but never make them smaller. */
1754 static int regs_allocated_size;
1756 static const char **regstart, **regend;
1757 static const char **old_regstart, **old_regend;
1758 static const char **best_regstart, **best_regend;
1759 static register_info_type *reg_info;
1760 static const char **reg_dummy;
1761 static register_info_type *reg_info_dummy;
1763 /* Make the register vectors big enough for NUM_REGS registers,
1764 but don't make them smaller. */
1766 static regex_grow_registers (num_regs)
1769 if (num_regs > regs_allocated_size) {
1770 RETALLOC_IF (regstart, num_regs, const char *);
1771 RETALLOC_IF (regend, num_regs, const char *);
1772 RETALLOC_IF (old_regstart, num_regs, const char *);
1773 RETALLOC_IF (old_regend, num_regs, const char *);
1774 RETALLOC_IF (best_regstart, num_regs, const char *);
1775 RETALLOC_IF (best_regend, num_regs, const char *);
1777 RETALLOC_IF (reg_info, num_regs, register_info_type);
1778 RETALLOC_IF (reg_dummy, num_regs, const char *);
1780 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1782 regs_allocated_size = num_regs;
1786 #endif /* not MATCH_MAY_ALLOCATE */
1788 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1792 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1793 Returns one of error codes defined in `regex.h', or zero for success.
1795 Assumes the `allocated' (and perhaps `buffer') and `translate'
1796 fields are set in BUFP on entry.
1798 If it succeeds, results are put in BUFP (if it returns an error, the
1799 contents of BUFP are undefined):
1800 `buffer' is the compiled pattern;
1801 `syntax' is set to SYNTAX;
1802 `used' is set to the length of the compiled pattern;
1803 `fastmap_accurate' is zero;
1804 `re_nsub' is the number of subexpressions in PATTERN;
1805 `not_bol' and `not_eol' are zero;
1807 The `fastmap' and `newline_anchor' fields are neither
1808 examined nor set. */
1810 /* Return, freeing storage we allocated. */
1811 #define mem_free_STACK_RETURN(value) \
1812 return (free (compile_stack.stack), value) /* __MEM_CHECKED__ */
1814 #ifndef HAVE_ISCTYPE
1815 static int isctype (char c, int desc)
1841 return ISXDIGIT (c);
1843 return 0; /* false */
1847 static reg_errcode_t regex_compile (pattern, size, syntax, bufp)
1848 const char *pattern;
1850 reg_syntax_t syntax;
1851 struct re_pattern_buffer *bufp;
1853 /* We fetch characters from PATTERN here. Even though PATTERN is
1854 `char *' (i.e., signed), we declare these variables as unsigned, so
1855 they can be reliably used as array indices. */
1856 register unsigned char c, c1;
1858 /* A random temporary spot in PATTERN. */
1861 /* Points to the end of the buffer, where we should append. */
1862 register unsigned char *b;
1864 /* Keeps track of unclosed groups. */
1865 compile_stack_type compile_stack;
1867 /* Points to the current (ending) position in the pattern. */
1868 const char *p = pattern;
1869 const char *pend = pattern + size;
1871 /* How to translate the characters in the pattern. */
1872 RE_TRANSLATE_TYPE translate = bufp->translate;
1874 /* Address of the count-byte of the most recently inserted `exactn'
1875 command. This makes it possible to tell if a new exact-match
1876 character can be added to that command or if the character requires
1877 a new `exactn' command. */
1878 unsigned char *pending_exact = 0;
1880 /* Address of start of the most recently finished expression.
1881 This tells, e.g., postfix * where to find the start of its
1882 operand. Reset at the beginning of groups and alternatives. */
1883 unsigned char *laststart = 0;
1885 /* Address of beginning of regexp, or inside of last group. */
1886 unsigned char *begalt;
1888 /* Place in the uncompiled pattern (i.e., the {) to
1889 which to go back if the interval is invalid. */
1890 const char *beg_interval;
1892 /* Address of the place where a forward jump should go to the end of
1893 the containing expression. Each alternative of an `or' -- except the
1894 last -- ends with a forward jump of this sort. */
1895 unsigned char *fixup_alt_jump = 0;
1897 /* Counts open-groups as they are encountered. Remembered for the
1898 matching close-group on the compile stack, so the same register
1899 number is put in the stop_memory as the start_memory. */
1900 regnum_t regnum = 0;
1903 DEBUG_PRINT1 ("\nCompiling pattern: ");
1905 unsigned debug_count;
1907 for (debug_count = 0; debug_count < size; debug_count++)
1908 putchar (pattern[debug_count]);
1913 /* Initialize the compile stack. */
1914 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1915 if (compile_stack.stack == NULL)
1918 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1919 compile_stack.avail = 0;
1921 /* Initialize the pattern buffer. */
1922 bufp->syntax = syntax;
1923 bufp->fastmap_accurate = 0;
1924 bufp->not_bol = bufp->not_eol = 0;
1926 /* Set `used' to zero, so that if we return an error, the pattern
1927 printer (for debugging) will think there's no pattern. We reset it
1931 /* Always count groups, whether or not bufp->no_sub is set. */
1934 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1935 /* Initialize the syntax table. */
1936 init_syntax_once ();
1939 if (bufp->allocated == 0) {
1940 if (bufp->buffer) { /* If zero allocated, but buffer is non-null, try to realloc
1941 enough space. This loses if buffer's address is bogus, but
1942 that is the user's responsibility. */
1943 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1945 else { /* Caller did not allocate a buffer. Do it for them. */
1946 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1949 mem_free_STACK_RETURN (REG_ESPACE);
1951 bufp->allocated = INIT_BUF_SIZE;
1954 begalt = b = bufp->buffer;
1956 /* Loop through the uncompiled pattern until we're at the end. */
1963 if ( /* If at start of pattern, it's an operator. */
1965 /* If context independent, it's an operator. */
1966 || syntax & RE_CONTEXT_INDEP_ANCHORS
1967 /* Otherwise, depends on what's come before. */
1968 || at_begline_loc_p (pattern, p, syntax))
1978 if ( /* If at end of pattern, it's an operator. */
1980 /* If context independent, it's an operator. */
1981 || syntax & RE_CONTEXT_INDEP_ANCHORS
1982 /* Otherwise, depends on what's next. */
1983 || at_endline_loc_p (p, pend, syntax))
1993 if ((syntax & RE_BK_PLUS_QM)
1994 || (syntax & RE_LIMITED_OPS))
1998 /* If there is no previous pattern... */
2000 if (syntax & RE_CONTEXT_INVALID_OPS)
2001 mem_free_STACK_RETURN (REG_BADRPT);
2002 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2007 /* Are we optimizing this jump? */
2008 boolean keep_string_p = false;
2010 /* 1 means zero (many) matches is allowed. */
2011 char zero_times_ok = 0, many_times_ok = 0;
2013 /* If there is a sequence of repetition chars, collapse it
2014 down to just one (the right one). We can't combine
2015 interval operators with these because of, e.g., `a{2}*',
2016 which should only match an even number of `a's. */
2019 zero_times_ok |= c != '+';
2020 many_times_ok |= c != '?';
2028 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')));
2030 else if (syntax & RE_BK_PLUS_QM && c == '\\') {
2032 mem_free_STACK_RETURN (REG_EESCAPE);
2035 if (!(c1 == '+' || c1 == '?')) {
2048 /* If we get here, we found another repeat character. */
2051 /* Star, etc. applied to an empty pattern is equivalent
2052 to an empty pattern. */
2056 /* Now we know whether or not zero matches is allowed
2057 and also whether or not two or more matches is allowed. */
2058 if (many_times_ok) { /* More than one repetition is allowed, so put in at the
2059 end a backward relative jump from `b' to before the next
2060 jump we're going to put in below (which jumps from
2061 laststart to after this jump).
2063 But if we are at the `*' in the exact sequence `.*\n',
2064 insert an unconditional jump backwards to the .,
2065 instead of the beginning of the loop. This way we only
2066 push a failure point once, instead of every time
2067 through the loop. */
2068 assert (p - 1 > pattern);
2070 /* Allocate the space for the jump. */
2071 GET_BUFFER_SPACE (3);
2073 /* We know we are not at the first character of the pattern,
2074 because laststart was nonzero. And we've already
2075 incremented `p', by the way, to be the character after
2076 the `*'. Do we have to do something analogous here
2077 for null bytes, because of RE_DOT_NOT_NULL? */
2078 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2080 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2081 && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */
2082 STORE_JUMP (jump, b, laststart);
2083 keep_string_p = true;
2086 /* Anything else. */
2087 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2089 /* We've added more stuff to the buffer. */
2093 /* On failure, jump from laststart to b + 3, which will be the
2094 end of the buffer after this jump is inserted. */
2095 GET_BUFFER_SPACE (3);
2096 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2097 : on_failure_jump, laststart, b + 3);
2101 if (!zero_times_ok) {
2102 /* At least one repetition is required, so insert a
2103 `dummy_failure_jump' before the initial
2104 `on_failure_jump' instruction of the loop. This
2105 effects a skip over that instruction the first time
2106 we hit that loop. */
2107 GET_BUFFER_SPACE (3);
2108 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2123 boolean had_char_class = false;
2126 mem_free_STACK_RETURN (REG_EBRACK);
2128 /* Ensure that we have enough space to push a charset: the
2129 opcode, the length count, and the bitset; 34 bytes in all. */
2130 GET_BUFFER_SPACE (34);
2134 /* We test `*p == '^' twice, instead of using an if
2135 statement, so we only need one BUF_PUSH. */
2136 BUF_PUSH (*p == '^' ? charset_not : charset);
2140 /* Remember the first position in the bracket expression. */
2143 /* Push the number of bytes in the bitmap. */
2144 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2146 /* Clear the whole map. */
2147 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2149 /* charset_not matches newline according to a syntax bit. */
2150 if ((re_opcode_t) b[-2] == charset_not
2151 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2152 SET_LIST_BIT ('\n');
2154 /* Read in characters and ranges, setting map bits. */
2157 mem_free_STACK_RETURN (REG_EBRACK);
2161 /* \ might escape characters inside [...] and [^...]. */
2162 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
2164 mem_free_STACK_RETURN (REG_EESCAPE);
2171 /* Could be the end of the bracket expression. If it's
2172 not (i.e., when the bracket expression is `[]' so
2173 far), the ']' character bit gets set way below. */
2174 if (c == ']' && p != p1 + 1)
2177 /* Look ahead to see if it's a range when the last thing
2178 was a character class. */
2179 if (had_char_class && c == '-' && *p != ']')
2180 mem_free_STACK_RETURN (REG_ERANGE);
2182 /* Look ahead to see if it's a range when the last thing
2183 was a character: if this is a hyphen not at the
2184 beginning or the end of a list, then it's the range
2186 if (c == '-' && !(p - 2 >= pattern && p[-2] == '[')
2187 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2190 = compile_range (&p, pend, translate, syntax, b);
2191 if (ret != REG_NOERROR)
2192 mem_free_STACK_RETURN (ret);
2195 else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */
2198 /* Move past the `-'. */
2201 ret = compile_range (&p, pend, translate, syntax, b);
2202 if (ret != REG_NOERROR)
2203 mem_free_STACK_RETURN (ret);
2206 /* See if we're at the beginning of a possible character
2209 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */
2210 char str[CHAR_CLASS_MAX_LENGTH + 1];
2215 /* If pattern is `[[:'. */
2217 mem_free_STACK_RETURN (REG_EBRACK);
2221 if (c == ':' || c == ']' || p == pend
2222 || c1 == CHAR_CLASS_MAX_LENGTH)
2228 /* If isn't a word bracketed by `[:' and:`]':
2229 undo the ending character, the letters, and leave
2230 the leading `:' and `[' (but set bits for them). */
2231 if (c == ':' && *p == ']') {
2232 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
2233 boolean is_lower = STREQ (str, "lower");
2234 boolean is_upper = STREQ (str, "upper");
2240 mem_free_STACK_RETURN (REG_ECTYPE);
2242 /* Throw away the ] at the end of the character
2247 mem_free_STACK_RETURN (REG_EBRACK);
2249 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) {
2250 if (isctype (ch, wt))
2253 if (translate && (is_upper || is_lower)
2254 && (ISUPPER (ch) || ISLOWER (ch)))
2258 had_char_class = true;
2261 boolean is_alnum = STREQ (str, "alnum");
2262 boolean is_alpha = STREQ (str, "alpha");
2263 boolean is_blank = STREQ (str, "blank");
2264 boolean is_cntrl = STREQ (str, "cntrl");
2265 boolean is_digit = STREQ (str, "digit");
2266 boolean is_graph = STREQ (str, "graph");
2267 boolean is_lower = STREQ (str, "lower");
2268 boolean is_print = STREQ (str, "print");
2269 boolean is_punct = STREQ (str, "punct");
2270 boolean is_space = STREQ (str, "space");
2271 boolean is_upper = STREQ (str, "upper");
2272 boolean is_xdigit = STREQ (str, "xdigit");
2274 if (!IS_CHAR_CLASS (str))
2275 mem_free_STACK_RETURN (REG_ECTYPE);
2277 /* Throw away the ] at the end of the character
2282 mem_free_STACK_RETURN (REG_EBRACK);
2284 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
2285 /* This was split into 3 if's to
2286 avoid an arbitrary limit in some compiler. */
2287 if ((is_alnum && ISALNUM (ch))
2288 || (is_alpha && ISALPHA (ch))
2289 || (is_blank && ISBLANK (ch))
2290 || (is_cntrl && ISCNTRL (ch)))
2292 if ((is_digit && ISDIGIT (ch))
2293 || (is_graph && ISGRAPH (ch))
2294 || (is_lower && ISLOWER (ch))
2295 || (is_print && ISPRINT (ch)))
2297 if ((is_punct && ISPUNCT (ch))
2298 || (is_space && ISSPACE (ch))
2299 || (is_upper && ISUPPER (ch))
2300 || (is_xdigit && ISXDIGIT (ch)))
2302 if (translate && (is_upper || is_lower)
2303 && (ISUPPER (ch) || ISLOWER (ch)))
2306 had_char_class = true;
2307 #endif /* libc || wctype.h */
2315 had_char_class = false;
2319 had_char_class = false;
2324 /* Discard any (non)matching list bytes that are all 0 at the
2325 end of the map. Decrease the map-length byte too. */
2326 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2334 if (syntax & RE_NO_BK_PARENS)
2341 if (syntax & RE_NO_BK_PARENS)
2348 if (syntax & RE_NEWLINE_ALT)
2355 if (syntax & RE_NO_BK_VBAR)
2362 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2363 goto handle_interval;
2370 mem_free_STACK_RETURN (REG_EESCAPE);
2372 /* Do not translate the character after the \, so that we can
2373 distinguish, e.g., \B from \b, even if we normally would
2374 translate, e.g., B to b. */
2379 if (syntax & RE_NO_BK_PARENS)
2380 goto normal_backslash;
2386 if (COMPILE_STACK_FULL) {
2387 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2388 compile_stack_elt_t);
2389 if (compile_stack.stack == NULL)
2392 compile_stack.size <<= 1;
2395 /* These are the values to restore when we hit end of this
2396 group. They are all relative offsets, so that if the
2397 whole pattern moves because of realloc, they will still
2399 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2400 COMPILE_STACK_TOP.fixup_alt_jump
2401 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2402 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2403 COMPILE_STACK_TOP.regnum = regnum;
2405 /* We will eventually replace the 0 with the number of
2406 groups inner to this one. But do not push a
2407 start_memory for groups beyond the last one we can
2408 represent in the compiled pattern. */
2409 if (regnum <= MAX_REGNUM) {
2410 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2411 BUF_PUSH_3 (start_memory, regnum, 0);
2414 compile_stack.avail++;
2419 /* If we've reached MAX_REGNUM groups, then this open
2420 won't actually generate any code, so we'll have to
2421 clear pending_exact explicitly. */
2427 if (syntax & RE_NO_BK_PARENS)
2428 goto normal_backslash;
2430 if (COMPILE_STACK_EMPTY) {
2431 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) {
2432 goto normal_backslash;
2434 mem_free_STACK_RETURN (REG_ERPAREN);
2439 if (fixup_alt_jump) { /* Push a dummy failure point at the end of the
2440 alternative for a possible future
2441 `pop_failure_jump' to pop. See comments at
2442 `push_dummy_failure' in `re_match_2'. */
2443 BUF_PUSH (push_dummy_failure);
2445 /* We allocated space for this jump when we assigned
2446 to `fixup_alt_jump', in the `handle_alt' case below. */
2447 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2450 /* See similar code for backslashed left paren above. */
2451 if (COMPILE_STACK_EMPTY) {
2452 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) {
2455 mem_free_STACK_RETURN (REG_ERPAREN);
2459 /* Since we just checked for an empty stack above, this
2460 ``can't happen''. */
2461 assert (compile_stack.avail != 0);
2463 /* We don't just want to restore into `regnum', because
2464 later groups should continue to be numbered higher,
2465 as in `(ab)c(de)' -- the second group is #2. */
2466 regnum_t this_group_regnum;
2468 compile_stack.avail--;
2469 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2471 = COMPILE_STACK_TOP.fixup_alt_jump
2472 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 : 0;
2473 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2474 this_group_regnum = COMPILE_STACK_TOP.regnum;
2475 /* If we've reached MAX_REGNUM groups, then this open
2476 won't actually generate any code, so we'll have to
2477 clear pending_exact explicitly. */
2480 /* We're at the end of the group, so now we know how many
2481 groups were inside this one. */
2482 if (this_group_regnum <= MAX_REGNUM) {
2483 unsigned char *inner_group_loc
2484 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2486 *inner_group_loc = regnum - this_group_regnum;
2487 BUF_PUSH_3 (stop_memory, this_group_regnum,
2488 regnum - this_group_regnum);
2494 case '|': /* `\|'. */
2495 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2496 goto normal_backslash;
2498 if (syntax & RE_LIMITED_OPS)
2501 /* Insert before the previous alternative a jump which
2502 jumps to this alternative if the former fails. */
2503 GET_BUFFER_SPACE (3);
2504 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2508 /* The alternative before this one has a jump after it
2509 which gets executed if it gets matched. Adjust that
2510 jump so it will jump to this alternative's analogous
2511 jump (put in below, which in turn will jump to the next
2512 (if any) alternative's such jump, etc.). The last such
2513 jump jumps to the correct final destination. A picture:
2519 If we are at `b', then fixup_alt_jump right now points to a
2520 three-byte space after `a'. We'll put in the jump, set
2521 fixup_alt_jump to right after `b', and leave behind three
2522 bytes which we'll fill in when we get to after `c'. */
2525 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2527 /* Mark and leave space for a jump after this alternative,
2528 to be filled in later either by next alternative or
2529 when know we're at the end of a series of alternatives. */
2531 GET_BUFFER_SPACE (3);
2540 /* If \{ is a literal. */
2541 if (!(syntax & RE_INTERVALS)
2542 /* If we're at `\{' and it's not the open-interval
2544 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2545 || (p - 2 == pattern && p == pend))
2546 goto normal_backslash;
2550 /* If got here, then the syntax allows intervals. */
2552 /* At least (most) this many matches must be made. */
2553 int lower_bound = -1, upper_bound = -1;
2555 beg_interval = p - 1;
2558 if (syntax & RE_NO_BK_BRACES)
2559 goto unfetch_interval;
2561 mem_free_STACK_RETURN (REG_EBRACE);
2564 GET_UNSIGNED_NUMBER (lower_bound);
2567 GET_UNSIGNED_NUMBER (upper_bound);
2568 if (upper_bound < 0)
2569 upper_bound = RE_DUP_MAX;
2572 /* Interval such as `{1}' => match exactly once. */
2573 upper_bound = lower_bound;
2575 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2576 || lower_bound > upper_bound) {
2577 if (syntax & RE_NO_BK_BRACES)
2578 goto unfetch_interval;
2580 mem_free_STACK_RETURN (REG_BADBR);
2583 if (!(syntax & RE_NO_BK_BRACES)) {
2585 mem_free_STACK_RETURN (REG_EBRACE);
2591 if (syntax & RE_NO_BK_BRACES)
2592 goto unfetch_interval;
2594 mem_free_STACK_RETURN (REG_BADBR);
2597 /* We just parsed a valid interval. */
2599 /* If it's invalid to have no preceding re. */
2601 if (syntax & RE_CONTEXT_INVALID_OPS)
2602 mem_free_STACK_RETURN (REG_BADRPT);
2603 else if (syntax & RE_CONTEXT_INDEP_OPS)
2606 goto unfetch_interval;
2609 /* If the upper bound is zero, don't want to succeed at
2610 all; jump from `laststart' to `b + 3', which will be
2611 the end of the buffer after we insert the jump. */
2612 if (upper_bound == 0) {
2613 GET_BUFFER_SPACE (3);
2614 INSERT_JUMP (jump, laststart, b + 3);
2618 /* Otherwise, we have a nontrivial interval. When
2619 we're all done, the pattern will look like:
2620 set_number_at <jump count> <upper bound>
2621 set_number_at <succeed_n count> <lower bound>
2622 succeed_n <after jump addr> <succeed_n count>
2624 jump_n <succeed_n addr> <jump count>
2625 (The upper bound and `jump_n' are omitted if
2626 `upper_bound' is 1, though.) */
2627 else { /* If the upper bound is > 1, we need to insert
2628 more at the end of the loop. */
2629 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2631 GET_BUFFER_SPACE (nbytes);
2633 /* Initialize lower bound of the `succeed_n', even
2634 though it will be set during matching by its
2635 attendant `set_number_at' (inserted next),
2636 because `re_compile_fastmap' needs to know.
2637 Jump to the `jump_n' we might insert below. */
2638 INSERT_JUMP2 (succeed_n, laststart,
2639 b + 5 + (upper_bound > 1) * 5, lower_bound);
2642 /* Code to initialize the lower bound. Insert
2643 before the `succeed_n'. The `5' is the last two
2644 bytes of this `set_number_at', plus 3 bytes of
2645 the following `succeed_n'. */
2646 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2649 if (upper_bound > 1) { /* More than one repetition is allowed, so
2650 append a backward jump to the `succeed_n'
2651 that starts this interval.
2653 When we've reached this during matching,
2654 we'll have matched the interval once, so
2655 jump back only `upper_bound - 1' times. */
2656 STORE_JUMP2 (jump_n, b, laststart + 5, upper_bound - 1);
2659 /* The location we want to set is the second
2660 parameter of the `jump_n'; that is `b-2' as
2661 an absolute address. `laststart' will be
2662 the `set_number_at' we're about to insert;
2663 `laststart+3' the number to set, the source
2664 for the relative address. But we are
2665 inserting into the middle of the pattern --
2666 so everything is getting moved up by 5.
2667 Conclusion: (b - 2) - (laststart + 3) + 5,
2668 i.e., b - laststart.
2670 We insert this at the beginning of the loop
2671 so that if we fail during matching, we'll
2672 reinitialize the bounds. */
2673 insert_op2 (set_number_at, laststart, b - laststart,
2674 upper_bound - 1, b);
2679 beg_interval = NULL;
2684 /* If an invalid interval, match the characters as literals. */
2685 assert (beg_interval);
2687 beg_interval = NULL;
2689 /* normal_char and normal_backslash need `c'. */
2692 if (!(syntax & RE_NO_BK_BRACES)) {
2693 if (p > pattern && p[-1] == '\\')
2694 goto normal_backslash;
2699 /* There is no way to specify the before_dot and after_dot
2700 operators. rms says this is ok. --karl */
2708 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2714 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2720 if (re_syntax_options & RE_NO_GNU_OPS)
2723 BUF_PUSH (wordchar);
2728 if (re_syntax_options & RE_NO_GNU_OPS)
2731 BUF_PUSH (notwordchar);
2736 if (re_syntax_options & RE_NO_GNU_OPS)
2742 if (re_syntax_options & RE_NO_GNU_OPS)
2748 if (re_syntax_options & RE_NO_GNU_OPS)
2750 BUF_PUSH (wordbound);
2754 if (re_syntax_options & RE_NO_GNU_OPS)
2756 BUF_PUSH (notwordbound);
2760 if (re_syntax_options & RE_NO_GNU_OPS)
2766 if (re_syntax_options & RE_NO_GNU_OPS)
2780 if (syntax & RE_NO_BK_REFS)
2786 mem_free_STACK_RETURN (REG_ESUBREG);
2788 /* Can't back reference to a subexpression if inside of it. */
2789 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2793 BUF_PUSH_2 (duplicate, c1);
2799 if (syntax & RE_BK_PLUS_QM)
2802 goto normal_backslash;
2806 /* You might think it would be useful for \ to mean
2807 not to translate; but if we don't translate it
2808 it will never match anything. */
2816 /* Expects the character in `c'. */
2818 /* If no exactn currently being built. */
2820 /* If last exactn not at current position. */
2821 || pending_exact + *pending_exact + 1 != b
2822 /* We have only one byte following the exactn for the count. */
2823 || *pending_exact == (1 << BYTEWIDTH) - 1
2824 /* If followed by a repetition operator. */
2825 || *p == '*' || *p == '^' || ((syntax & RE_BK_PLUS_QM)
2826 ? *p == '\\' && (p[1] == '+'
2828 : (*p == '+' || *p == '?'))
2829 || ((syntax & RE_INTERVALS)
2830 && ((syntax & RE_NO_BK_BRACES)
2831 ? *p == '{' : (p[0] == '\\' && p[1] == '{')))) {
2832 /* Start building a new exactn. */
2836 BUF_PUSH_2 (exactn, 0);
2837 pending_exact = b - 1;
2844 } /* while p != pend */
2847 /* Through the pattern now. */
2850 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2852 if (!COMPILE_STACK_EMPTY)
2853 mem_free_STACK_RETURN (REG_EPAREN);
2855 /* If we don't want backtracking, force success
2856 the first time we reach the end of the compiled pattern. */
2857 if (syntax & RE_NO_POSIX_BACKTRACKING)
2860 free (compile_stack.stack); /* __MEM_CHECKED__ */
2862 /* We have succeeded; set the length of the buffer. */
2863 bufp->used = b - bufp->buffer;
2867 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2868 print_compiled_pattern (bufp);
2872 #ifndef MATCH_MAY_ALLOCATE
2873 /* Initialize the failure stack to the largest possible stack. This
2874 isn't necessary unless we're trying to avoid calling alloca in
2875 the search and match routines. */
2877 int num_regs = bufp->re_nsub + 1;
2879 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2880 is strictly greater than re_max_failures, the largest possible stack
2881 is 2 * re_max_failures failure points. */
2882 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) {
2883 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2886 if (!fail_stack.stack)
2888 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2889 * sizeof (fail_stack_elt_t));
2892 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2894 * sizeof (fail_stack_elt_t)));
2895 #else /* not emacs */
2896 if (!fail_stack.stack)
2897 fail_stack.stack = (fail_stack_elt_t *) malloc (fail_stack.size /* __MEM_CHECKED__ */
2900 (fail_stack_elt_t));
2902 fail_stack.stack = (fail_stack_elt_t *) realloc (fail_stack.stack, /* __MEM_CHECKED__ */
2906 (fail_stack_elt_t)));
2907 #endif /* not emacs */
2910 regex_grow_registers (num_regs);
2912 #endif /* not MATCH_MAY_ALLOCATE */
2915 } /* regex_compile */
2917 /* Subroutines for `regex_compile'. */
2919 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2921 static void store_op1 (op, loc, arg)
2926 *loc = (unsigned char) op;
2927 STORE_NUMBER (loc + 1, arg);
2931 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2933 static void store_op2 (op, loc, arg1, arg2)
2938 *loc = (unsigned char) op;
2939 STORE_NUMBER (loc + 1, arg1);
2940 STORE_NUMBER (loc + 3, arg2);
2944 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2945 for OP followed by two-byte integer parameter ARG. */
2947 static void insert_op1 (op, loc, arg, end)
2953 register unsigned char *pfrom = end;
2954 register unsigned char *pto = end + 3;
2956 while (pfrom != loc)
2959 store_op1 (op, loc, arg);
2963 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2965 static void insert_op2 (op, loc, arg1, arg2, end)
2971 register unsigned char *pfrom = end;
2972 register unsigned char *pto = end + 5;
2974 while (pfrom != loc)
2977 store_op2 (op, loc, arg1, arg2);
2981 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2982 after an alternative or a begin-subexpression. We assume there is at
2983 least one character before the ^. */
2985 static boolean at_begline_loc_p (pattern, p, syntax)
2986 const char *pattern, *p;
2987 reg_syntax_t syntax;
2989 const char *prev = p - 2;
2990 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2993 /* After a subexpression? */
2994 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2995 /* After an alternative? */
2996 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3000 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3001 at least one character after the $, i.e., `P < PEND'. */
3003 static boolean at_endline_loc_p (p, pend, syntax)
3004 const char *p, *pend;
3005 reg_syntax_t syntax;
3007 const char *next = p;
3008 boolean next_backslash = *next == '\\';
3009 const char *next_next = p + 1 < pend ? p + 1 : 0;
3012 /* Before a subexpression? */
3013 (syntax & RE_NO_BK_PARENS ? *next == ')'
3014 : next_backslash && next_next && *next_next == ')')
3015 /* Before an alternative? */
3016 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3017 : next_backslash && next_next && *next_next == '|');
3021 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3022 false if it's not. */
3024 static boolean group_in_compile_stack (compile_stack, regnum)
3025 compile_stack_type compile_stack;
3030 for (this_element = compile_stack.avail - 1;
3031 this_element >= 0; this_element--)
3032 if (compile_stack.stack[this_element].regnum == regnum)
3039 /* Read the ending character of a range (in a bracket expression) from the
3040 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3041 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3042 Then we set the translation of all bits between the starting and
3043 ending characters (inclusive) in the compiled pattern B.
3045 Return an error code.
3047 We use these short variable names so we can use the same macros as
3048 `regex_compile' itself. */
3050 static reg_errcode_t compile_range (p_ptr, pend, translate, syntax, b)
3051 const char **p_ptr, *pend;
3052 RE_TRANSLATE_TYPE translate;
3053 reg_syntax_t syntax;
3058 const char *p = *p_ptr;
3059 unsigned int range_start, range_end;
3064 /* Even though the pattern is a signed `char *', we need to fetch
3065 with unsigned char *'s; if the high bit of the pattern character
3066 is set, the range endpoints will be negative if we fetch using a
3069 We also want to fetch the endpoints without translating them; the
3070 appropriate translation is done in the bit-setting loop below. */
3071 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3072 range_start = ((const unsigned char *) p)[-2];
3073 range_end = ((const unsigned char *) p)[0];
3075 /* Have to increment the pointer into the pattern string, so the
3076 caller isn't still at the ending character. */
3079 /* If the start is after the end, the range is empty. */
3080 if (range_start > range_end)
3081 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3083 /* Here we see why `this_char' has to be larger than an `unsigned
3084 char' -- the range is inclusive, so if `range_end' == 0xff
3085 (assuming 8-bit characters), we would otherwise go into an infinite
3086 loop, since all characters <= 0xff. */
3087 for (this_char = range_start; this_char <= range_end; this_char++) {
3088 SET_LIST_BIT (TRANSLATE (this_char));
3094 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3095 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3096 characters can start a string that matches the pattern. This fastmap
3097 is used by re_search to skip quickly over impossible starting points.
3099 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3100 area as BUFP->fastmap.
3102 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3105 Returns 0 if we succeed, -2 if an internal error. */
3107 int re_compile_fastmap (bufp)
3108 struct re_pattern_buffer *bufp;
3112 #ifdef MATCH_MAY_ALLOCATE
3113 fail_stack_type fail_stack;
3115 #ifndef REGEX_MALLOC
3118 /* We don't push any register information onto the failure stack. */
3119 unsigned num_regs = 0;
3121 register char *fastmap = bufp->fastmap;
3122 unsigned char *pattern = bufp->buffer;
3123 unsigned char *p = pattern;
3124 register unsigned char *pend = pattern + bufp->used;
3127 /* This holds the pointer to the failure stack, when
3128 it is allocated relocatably. */
3129 fail_stack_elt_t *failure_stack_ptr;
3132 /* Assume that each path through the pattern can be null until
3133 proven otherwise. We set this false at the bottom of switch
3134 statement, to which we get only if a particular path doesn't
3135 match the empty string. */
3136 boolean path_can_be_null = true;
3138 /* We aren't doing a `succeed_n' to begin with. */
3139 boolean succeed_n_p = false;
3141 assert (fastmap != NULL && p != NULL);
3144 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3145 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3146 bufp->can_be_null = 0;
3149 if (p == pend || *p == succeed) {
3150 /* We have reached the (effective) end of pattern. */
3151 if (!FAIL_STACK_EMPTY ()) {
3152 bufp->can_be_null |= path_can_be_null;
3154 /* Reset for next path. */
3155 path_can_be_null = true;
3157 p = fail_stack.stack[--fail_stack.avail].pointer;
3165 /* We should never be about to go beyond the end of the pattern. */
3168 switch (SWITCH_ENUM_CAST ((re_opcode_t) * p++)) {
3170 /* I guess the idea here is to simply not bother with a fastmap
3171 if a backreference is used, since it's too hard to figure out
3172 the fastmap for the corresponding group. Setting
3173 `can_be_null' stops `re_search_2' from using the fastmap, so
3174 that is all we do. */
3176 bufp->can_be_null = 1;
3180 /* Following are the cases which match a character. These end
3189 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3190 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3196 /* Chars beyond end of map must be allowed. */
3197 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3200 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3201 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3207 for (j = 0; j < (1 << BYTEWIDTH); j++)
3208 if (SYNTAX (j) == Sword)
3214 for (j = 0; j < (1 << BYTEWIDTH); j++)
3215 if (SYNTAX (j) != Sword)
3222 int fastmap_newline = fastmap['\n'];
3224 /* `.' matches anything ... */
3225 for (j = 0; j < (1 << BYTEWIDTH); j++)
3228 /* ... except perhaps newline. */
3229 if (!(bufp->syntax & RE_DOT_NEWLINE))
3230 fastmap['\n'] = fastmap_newline;
3232 /* Return if we have already set `can_be_null'; if we have,
3233 then the fastmap is irrelevant. Something's wrong here. */
3234 else if (bufp->can_be_null)
3237 /* Otherwise, have to check alternative paths. */
3244 for (j = 0; j < (1 << BYTEWIDTH); j++)
3245 if (SYNTAX (j) == (enum syntaxcode) k)
3252 for (j = 0; j < (1 << BYTEWIDTH); j++)
3253 if (SYNTAX (j) != (enum syntaxcode) k)
3258 /* All cases after this match the empty string. These end with
3278 case push_dummy_failure:
3283 case pop_failure_jump:
3284 case maybe_pop_jump:
3287 case dummy_failure_jump:
3288 EXTRACT_NUMBER_AND_INCR (j, p);
3293 /* Jump backward implies we just went through the body of a
3294 loop and matched nothing. Opcode jumped to should be
3295 `on_failure_jump' or `succeed_n'. Just treat it like an
3296 ordinary jump. For a * loop, it has pushed its failure
3297 point already; if so, discard that as redundant. */
3298 if ((re_opcode_t) * p != on_failure_jump
3299 && (re_opcode_t) * p != succeed_n)
3303 EXTRACT_NUMBER_AND_INCR (j, p);
3306 /* If what's on the stack is where we are now, pop it. */
3307 if (!FAIL_STACK_EMPTY ()
3308 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3314 case on_failure_jump:
3315 case on_failure_keep_string_jump:
3316 handle_on_failure_jump:
3317 EXTRACT_NUMBER_AND_INCR (j, p);
3319 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3320 end of the pattern. We don't want to push such a point,
3321 since when we restore it above, entering the switch will
3322 increment `p' past the end of the pattern. We don't need
3323 to push such a point since we obviously won't find any more
3324 fastmap entries beyond `pend'. Such a pattern can match
3325 the null string, though. */
3327 if (!PUSH_PATTERN_OP (p + j, fail_stack)) {
3328 RESET_FAIL_STACK ();
3333 bufp->can_be_null = 1;
3336 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3337 succeed_n_p = false;
3344 /* Get to the number of times to succeed. */
3347 /* Increment p past the n for when k != 0. */
3348 EXTRACT_NUMBER_AND_INCR (k, p);
3351 succeed_n_p = true; /* Spaghetti code alert. */
3352 goto handle_on_failure_jump;
3369 abort (); /* We have listed all the cases. */
3372 /* Getting here means we have found the possible starting
3373 characters for one path of the pattern -- and that the empty
3374 string does not match. We need not follow this path further.
3375 Instead, look at the next alternative (remembered on the
3376 stack), or quit if no more. The test at the top of the loop
3377 does these things. */
3378 path_can_be_null = false;
3382 /* Set `can_be_null' for the last path (also the first path, if the
3383 pattern is empty). */
3384 bufp->can_be_null |= path_can_be_null;
3387 RESET_FAIL_STACK ();
3389 } /* re_compile_fastmap */
3391 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3392 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3393 this memory for recording register information. STARTS and ENDS
3394 must be allocated using the malloc library routine, and must each
3395 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3397 If NUM_REGS == 0, then subsequent matches should allocate their own
3400 Unless this function is called, the first search or match using
3401 PATTERN_BUFFER will allocate its own register data, without
3402 freeing the old data. */
3404 void re_set_registers (bufp, regs, num_regs, starts, ends)
3405 struct re_pattern_buffer *bufp;
3406 struct re_registers *regs;
3408 regoff_t *starts, *ends;
3411 bufp->regs_allocated = REGS_REALLOCATE;
3412 regs->num_regs = num_regs;
3413 regs->start = starts;
3417 bufp->regs_allocated = REGS_UNALLOCATED;
3419 regs->start = regs->end = (regoff_t *) 0;
3423 /* Searching routines. */
3425 /* Like re_search_2, below, but only one string is specified, and
3426 doesn't let you say where to stop matching. */
3428 int re_search (bufp, string, size, startpos, range, regs)
3429 struct re_pattern_buffer *bufp;
3431 int size, startpos, range;
3432 struct re_registers *regs;
3434 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3439 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3440 virtual concatenation of STRING1 and STRING2, starting first at index
3441 STARTPOS, then at STARTPOS + 1, and so on.
3443 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3445 RANGE is how far to scan while trying to match. RANGE = 0 means try
3446 only at STARTPOS; in general, the last start tried is STARTPOS +
3449 In REGS, return the indices of the virtual concatenation of STRING1
3450 and STRING2 that matched the entire BUFP->buffer and its contained
3453 Do not consider matching one past the index STOP in the virtual
3454 concatenation of STRING1 and STRING2.
3456 We return either the position in the strings at which the match was
3457 found, -1 if no match, or -2 if error (such as failure
3461 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs,
3463 struct re_pattern_buffer *bufp;
3464 const char *string1, *string2;
3468 struct re_registers *regs;
3472 register char *fastmap = bufp->fastmap;
3473 register RE_TRANSLATE_TYPE translate = bufp->translate;
3474 int total_size = size1 + size2;
3475 int endpos = startpos + range;
3477 /* Check for out-of-range STARTPOS. */
3478 if (startpos < 0 || startpos > total_size)
3481 /* Fix up RANGE if it might eventually take us outside
3482 the virtual concatenation of STRING1 and STRING2.
3483 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3485 range = 0 - startpos;
3486 else if (endpos > total_size)
3487 range = total_size - startpos;
3489 /* If the search isn't to be a backwards one, don't waste time in a
3490 search for a pattern that must be anchored. */
3491 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) {
3499 /* In a forward search for something that starts with \=.
3500 don't keep searching past point. */
3501 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) {
3502 range = PT - startpos;
3508 /* Update the fastmap now if not correct already. */
3509 if (fastmap && !bufp->fastmap_accurate)
3510 if (re_compile_fastmap (bufp) == -2)
3513 /* Loop through the string, looking for a place to start matching. */
3515 /* If a fastmap is supplied, skip quickly over characters that
3516 cannot be the start of a match. If the pattern can match the
3517 null string, however, we don't need to skip characters; we want
3518 the first null string. */
3519 if (fastmap && startpos < total_size && !bufp->can_be_null) {
3520 if (range > 0) { /* Searching forwards. */
3521 register const char *d;
3522 register int lim = 0;
3525 if (startpos < size1 && startpos + range >= size1)
3526 lim = range - (size1 - startpos);
3528 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3530 /* Written out as an if-else to avoid testing `translate'
3533 while (range > lim && !fastmap[(unsigned char)
3534 translate[(unsigned char) *d++]])
3537 while (range > lim && !fastmap[(unsigned char) *d++])
3540 startpos += irange - range;
3542 else { /* Searching backwards. */
3544 register char c = (size1 == 0 || startpos >= size1
3545 ? string2[startpos - size1]
3546 : string1[startpos]);
3548 if (!fastmap[(unsigned char) TRANSLATE (c)])
3553 /* If can't match the null string, and that's all we have left, fail. */
3554 if (range >= 0 && startpos == total_size && fastmap && !bufp->can_be_null)
3557 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3558 startpos, regs, stop);
3559 #ifndef REGEX_MALLOC
3574 else if (range > 0) {
3586 /* This converts PTR, a pointer into one of the search strings `string1'
3587 and `string2' into an offset from the beginning of that string. */
3588 #define POINTER_TO_OFFSET(ptr) \
3589 (FIRST_STRING_P (ptr) \
3590 ? ((regoff_t) ((ptr) - string1)) \
3591 : ((regoff_t) ((ptr) - string2 + size1)))
3593 /* Macros for dealing with the split strings in re_match_2. */
3595 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3597 /* Call before fetching a character with *d. This switches over to
3598 string2 if necessary. */
3599 #define PREFETCH() \
3602 /* End of string2 => fail. */ \
3603 if (dend == end_match_2) \
3605 /* End of string1 => advance to string2. */ \
3607 dend = end_match_2; \
3611 /* Test if at very beginning or at very end of the virtual concatenation
3612 of `string1' and `string2'. If only one string, it's `string2'. */
3613 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3614 #define AT_STRINGS_END(d) ((d) == end2)
3617 /* Test if D points to a character which is word-constituent. We have
3618 two special cases to check for: if past the end of string1, look at
3619 the first character in string2; and if before the beginning of
3620 string2, look at the last character in string1. */
3621 #define WORDCHAR_P(d) \
3622 (SYNTAX ((d) == end1 ? *string2 \
3623 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3626 /* Disabled due to a compiler bug -- see comment at case wordbound */
3628 /* Test if the character before D and the one at D differ with respect
3629 to being word-constituent. */
3630 #define AT_WORD_BOUNDARY(d) \
3631 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3632 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3635 /* Free everything we malloc. */
3636 #ifdef MATCH_MAY_ALLOCATE
3637 #define mem_free_VAR(var) if (var) REGEX_mem_free (var); var = NULL
3638 #define mem_free_VARIABLES() \
3640 REGEX_mem_free_STACK (fail_stack.stack); \
3641 mem_free_VAR (regstart); \
3642 mem_free_VAR (regend); \
3643 mem_free_VAR (old_regstart); \
3644 mem_free_VAR (old_regend); \
3645 mem_free_VAR (best_regstart); \
3646 mem_free_VAR (best_regend); \
3647 mem_free_VAR (reg_info); \
3648 mem_free_VAR (reg_dummy); \
3649 mem_free_VAR (reg_info_dummy); \
3652 #define mem_free_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3653 #endif /* not MATCH_MAY_ALLOCATE */
3655 /* These values must meet several constraints. They must not be valid
3656 register values; since we have a limit of 255 registers (because
3657 we use only one byte in the pattern for the register number), we can
3658 use numbers larger than 255. They must differ by 1, because of
3659 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3660 be larger than the value for the highest register, so we do not try
3661 to actually save any registers when none are active. */
3662 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3663 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3665 /* Matching routines. */
3667 #ifndef emacs /* Emacs never uses this. */
3668 /* re_match is like re_match_2 except it takes only a single string. */
3670 int re_match (bufp, string, size, pos, regs)
3671 struct re_pattern_buffer *bufp;
3674 struct re_registers *regs;
3676 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3679 #ifndef REGEX_MALLOC
3686 #endif /* not emacs */
3688 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3690 register_info_type *
3692 static boolean alt_match_null_string_p
3693 _RE_ARGS ((unsigned char *p, unsigned char *end,
3694 register_info_type * reg_info));
3695 static boolean common_op_match_null_string_p
3696 _RE_ARGS ((unsigned char **p, unsigned char *end,
3697 register_info_type * reg_info));
3698 static int bcmp_translate
3699 _RE_ARGS ((const char *s1, const char *s2, int len, char *translate));
3701 /* re_match_2 matches the compiled pattern in BUFP against the
3702 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3703 and SIZE2, respectively). We start matching at POS, and stop
3706 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3707 store offsets for the substring each group matched in REGS. See the
3708 documentation for exactly how many groups we fill.
3710 We return -1 if no match, -2 if an internal error (such as the
3711 failure stack overflowing). Otherwise, we return the length of the
3712 matched substring. */
3714 int re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3715 struct re_pattern_buffer *bufp;
3716 const char *string1, *string2;
3719 struct re_registers *regs;
3722 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3725 #ifndef REGEX_MALLOC
3733 /* This is a separate function so that we can force an alloca cleanup
3736 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3737 struct re_pattern_buffer *bufp;
3738 const char *string1, *string2;
3741 struct re_registers *regs;
3744 /* General temporaries. */
3748 /* Just past the end of the corresponding string. */
3749 const char *end1, *end2;
3751 /* Pointers into string1 and string2, just past the last characters in
3752 each to consider matching. */
3753 const char *end_match_1, *end_match_2;
3755 /* Where we are in the data, and the end of the current string. */
3756 const char *d, *dend;
3758 /* Where we are in the pattern, and the end of the pattern. */
3759 unsigned char *p = bufp->buffer;
3760 register unsigned char *pend = p + bufp->used;
3762 /* Mark the opcode just after a start_memory, so we can test for an
3763 empty subpattern when we get to the stop_memory. */
3764 unsigned char *just_past_start_mem = 0;
3766 /* We use this to map every character in the string. */
3767 RE_TRANSLATE_TYPE translate = bufp->translate;
3769 /* Failure point stack. Each place that can handle a failure further
3770 down the line pushes a failure point on this stack. It consists of
3771 restart, regend, and reg_info for all registers corresponding to
3772 the subexpressions we're currently inside, plus the number of such
3773 registers, and, finally, two char *'s. The first char * is where
3774 to resume scanning the pattern; the second one is where to resume
3775 scanning the strings. If the latter is zero, the failure point is
3776 a ``dummy''; if a failure happens and the failure point is a dummy,
3777 it gets discarded and the next next one is tried. */
3778 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3779 fail_stack_type fail_stack;
3782 static unsigned failure_id = 0;
3783 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3787 /* This holds the pointer to the failure stack, when
3788 it is allocated relocatably. */
3789 fail_stack_elt_t *failure_stack_ptr;
3792 /* We fill all the registers internally, independent of what we
3793 return, for use in backreferences. The number here includes
3794 an element for register zero. */
3795 size_t num_regs = bufp->re_nsub + 1;
3797 /* The currently active registers. */
3798 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3799 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3801 /* Information on the contents of registers. These are pointers into
3802 the input strings; they record just what was matched (on this
3803 attempt) by a subexpression part of the pattern, that is, the
3804 regnum-th regstart pointer points to where in the pattern we began
3805 matching and the regnum-th regend points to right after where we
3806 stopped matching the regnum-th subexpression. (The zeroth register
3807 keeps track of what the whole pattern matches.) */
3808 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3809 const char **regstart, **regend;
3812 /* If a group that's operated upon by a repetition operator fails to
3813 match anything, then the register for its start will need to be
3814 restored because it will have been set to wherever in the string we
3815 are when we last see its open-group operator. Similarly for a
3817 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3818 const char **old_regstart, **old_regend;
3821 /* The is_active field of reg_info helps us keep track of which (possibly
3822 nested) subexpressions we are currently in. The matched_something
3823 field of reg_info[reg_num] helps us tell whether or not we have
3824 matched any of the pattern so far this time through the reg_num-th
3825 subexpression. These two fields get reset each time through any
3826 loop their register is in. */
3827 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3828 register_info_type *reg_info;
3831 /* The following record the register info as found in the above
3832 variables when we find a match better than any we've seen before.
3833 This happens as we backtrack through the failure points, which in
3834 turn happens only if we have not yet matched the entire string. */
3835 unsigned best_regs_set = false;
3837 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3838 const char **best_regstart, **best_regend;
3841 /* Logically, this is `best_regend[0]'. But we don't want to have to
3842 allocate space for that if we're not allocating space for anything
3843 else (see below). Also, we never need info about register 0 for
3844 any of the other register vectors, and it seems rather a kludge to
3845 treat `best_regend' differently than the rest. So we keep track of
3846 the end of the best match so far in a separate variable. We
3847 initialize this to NULL so that when we backtrack the first time
3848 and need to test it, it's not garbage. */
3849 const char *match_end = NULL;
3851 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3852 int set_regs_matched_done = 0;
3854 /* Used when we pop values we don't care about. */
3855 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3856 const char **reg_dummy;
3857 register_info_type *reg_info_dummy;
3861 /* Counts the total number of registers pushed. */
3862 unsigned num_regs_pushed = 0;
3865 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3869 #ifdef MATCH_MAY_ALLOCATE
3870 /* Do not bother to initialize all the register variables if there are
3871 no groups in the pattern, as it takes a fair amount of time. If
3872 there are groups, we include space for register 0 (the whole
3873 pattern), even though we never use it, since it simplifies the
3874 array indexing. We should fix this. */
3875 if (bufp->re_nsub) {
3876 regstart = REGEX_TALLOC (num_regs, const char *);
3877 regend = REGEX_TALLOC (num_regs, const char *);
3878 old_regstart = REGEX_TALLOC (num_regs, const char *);
3879 old_regend = REGEX_TALLOC (num_regs, const char *);
3880 best_regstart = REGEX_TALLOC (num_regs, const char *);
3881 best_regend = REGEX_TALLOC (num_regs, const char *);
3883 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3884 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3886 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3888 if (!(regstart && regend && old_regstart && old_regend && reg_info
3889 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) {
3890 mem_free_VARIABLES ();
3895 /* We must initialize all our variables to NULL, so that
3896 `mem_free_VARIABLES' doesn't try to free them. */
3897 regstart = regend = old_regstart = old_regend = best_regstart
3898 = best_regend = reg_dummy = NULL;
3899 reg_info = reg_info_dummy = (register_info_type *) NULL;
3901 #endif /* MATCH_MAY_ALLOCATE */
3903 /* The starting position is bogus. */
3904 if (pos < 0 || pos > size1 + size2) {
3905 mem_free_VARIABLES ();
3909 /* Initialize subexpression text positions to -1 to mark ones that no
3910 start_memory/stop_memory has been seen for. Also initialize the
3911 register information struct. */
3912 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
3913 regstart[mcnt] = regend[mcnt]
3914 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3916 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3917 IS_ACTIVE (reg_info[mcnt]) = 0;
3918 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3919 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3922 /* We move `string1' into `string2' if the latter's empty -- but not if
3923 `string1' is null. */
3924 if (size2 == 0 && string1 != NULL) {
3930 end1 = string1 + size1;
3931 end2 = string2 + size2;
3933 /* Compute where to stop matching, within the two strings. */
3934 if (stop <= size1) {
3935 end_match_1 = string1 + stop;
3936 end_match_2 = string2;
3940 end_match_2 = string2 + stop - size1;
3943 /* `p' scans through the pattern as `d' scans through the data.
3944 `dend' is the end of the input string that `d' points within. `d'
3945 is advanced into the following input string whenever necessary, but
3946 this happens before fetching; therefore, at the beginning of the
3947 loop, `d' can be pointing at the end of a string, but it cannot
3949 if (size1 > 0 && pos <= size1) {
3954 d = string2 + pos - size1;
3958 DEBUG_PRINT1 ("The compiled pattern is:\n");
3959 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3960 DEBUG_PRINT1 ("The string to match is: `");
3961 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3962 DEBUG_PRINT1 ("'\n");
3964 /* This loops over pattern commands. It exits by returning from the
3965 function if the match is complete, or it drops through if the match
3966 fails at this starting point in the input data. */
3969 DEBUG_PRINT2 ("\n%p: ", p);
3971 DEBUG_PRINT2 ("\n0x%x: ", p);
3974 if (p == pend) { /* End of pattern means we might have succeeded. */
3975 DEBUG_PRINT1 ("end of pattern ... ");
3977 /* If we haven't matched the entire string, and we want the
3978 longest match, try backtracking. */
3979 if (d != end_match_2) {
3980 /* 1 if this match ends in the same string (string1 or string2)
3981 as the best previous match. */
3982 boolean same_str_p = (FIRST_STRING_P (match_end)
3983 == MATCHING_IN_FIRST_STRING);
3985 /* 1 if this match is the best seen so far. */
3986 boolean best_match_p;
3988 /* AIX compiler got confused when this was combined
3989 with the previous declaration. */
3991 best_match_p = d > match_end;
3993 best_match_p = !MATCHING_IN_FIRST_STRING;
3995 DEBUG_PRINT1 ("backtracking.\n");
3997 if (!FAIL_STACK_EMPTY ()) { /* More failure points to try. */
3999 /* If exceeds best match so far, save it. */
4000 if (!best_regs_set || best_match_p) {
4001 best_regs_set = true;
4004 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4006 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
4007 best_regstart[mcnt] = regstart[mcnt];
4008 best_regend[mcnt] = regend[mcnt];
4014 /* If no failure points, don't restore garbage. And if
4015 last match is real best match, don't restore second
4017 else if (best_regs_set && !best_match_p) {
4019 /* Restore best match. It may happen that `dend ==
4020 end_match_1' while the restored d is in string2.
4021 For example, the pattern `x.*y.*z' against the
4022 strings `x-' and `y-z-', if the two strings are
4023 not consecutive in memory. */
4024 DEBUG_PRINT1 ("Restoring best registers.\n");
4027 dend = ((d >= string1 && d <= end1)
4028 ? end_match_1 : end_match_2);
4030 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
4031 regstart[mcnt] = best_regstart[mcnt];
4032 regend[mcnt] = best_regend[mcnt];
4035 } /* d != end_match_2 */
4038 DEBUG_PRINT1 ("Accepting match.\n");
4040 /* If caller wants register contents data back, do it. */
4041 if (regs && !bufp->no_sub) {
4042 /* Have the register data arrays been allocated? */
4043 if (bufp->regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. We need one
4044 extra element beyond `num_regs' for the `-1' marker
4046 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4047 regs->start = TALLOC (regs->num_regs, regoff_t);
4048 regs->end = TALLOC (regs->num_regs, regoff_t);
4049 if (regs->start == NULL || regs->end == NULL) {
4050 mem_free_VARIABLES ();
4053 bufp->regs_allocated = REGS_REALLOCATE;
4055 else if (bufp->regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already
4056 allocated, reallocate them. If we need fewer, just
4058 if (regs->num_regs < num_regs + 1) {
4059 regs->num_regs = num_regs + 1;
4060 RETALLOC (regs->start, regs->num_regs, regoff_t);
4061 RETALLOC (regs->end, regs->num_regs, regoff_t);
4062 if (regs->start == NULL || regs->end == NULL) {
4063 mem_free_VARIABLES ();
4069 /* These braces fend off a "empty body in an else-statement"
4070 warning under GCC when assert expands to nothing. */
4071 assert (bufp->regs_allocated == REGS_FIXED);
4074 /* Convert the pointer data in `regstart' and `regend' to
4075 indices. Register zero has to be set differently,
4076 since we haven't kept track of any info for it. */
4077 if (regs->num_regs > 0) {
4078 regs->start[0] = pos;
4079 regs->end[0] = (MATCHING_IN_FIRST_STRING
4080 ? ((regoff_t) (d - string1))
4081 : ((regoff_t) (d - string2 + size1)));
4084 /* Go through the first `min (num_regs, regs->num_regs)'
4085 registers, since that is all we initialized. */
4086 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4088 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4089 regs->start[mcnt] = regs->end[mcnt] = -1;
4092 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4094 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4098 /* If the regs structure we return has more elements than
4099 were in the pattern, set the extra elements to -1. If
4100 we (re)allocated the registers, this is the case,
4101 because we always allocate enough to have at least one
4103 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4104 regs->start[mcnt] = regs->end[mcnt] = -1;
4105 } /* regs && !bufp->no_sub */
4107 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4108 nfailure_points_pushed, nfailure_points_popped,
4109 nfailure_points_pushed - nfailure_points_popped);
4110 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4112 mcnt = d - pos - (MATCHING_IN_FIRST_STRING ? string1 : string2 - size1);
4114 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4116 mem_free_VARIABLES ();
4120 /* Otherwise match next pattern command. */
4121 switch (SWITCH_ENUM_CAST ((re_opcode_t) * p++)) {
4122 /* Ignore these. Used to ignore the n of succeed_n's which
4123 currently have n == 0. */
4125 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4129 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4132 /* Match the next n pattern characters exactly. The following
4133 byte in the pattern defines n, and the n bytes after that
4134 are the characters to match. */
4137 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4139 /* This is written out as an if-else so we don't waste time
4140 testing `translate' inside the loop. */
4144 if ((unsigned char) translate[(unsigned char) *d++]
4145 != (unsigned char) *p++)
4153 if (*d++ != (char) *p++)
4158 SET_REGS_MATCHED ();
4162 /* Match any character except possibly a newline or a null. */
4164 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4168 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4169 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4172 SET_REGS_MATCHED ();
4173 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4181 register unsigned char c;
4182 boolean not = (re_opcode_t) * (p - 1) == charset_not;
4184 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4187 c = TRANSLATE (*d); /* The character to match. */
4189 /* Cast to `unsigned' instead of `unsigned char' in case the
4190 bit list is a full 32 bytes long. */
4191 if (c < (unsigned) (*p * BYTEWIDTH)
4192 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4200 SET_REGS_MATCHED ();
4206 /* The beginning of a group is represented by start_memory.
4207 The arguments are the register number in the next byte, and the
4208 number of groups inner to this one in the next. The text
4209 matched within the group is recorded (in the internal
4210 registers data structure) under the register number. */
4212 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4214 /* Find out if this group can match the empty string. */
4215 p1 = p; /* To send to group_match_null_string_p. */
4217 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4218 REG_MATCH_NULL_STRING_P (reg_info[*p])
4219 = group_match_null_string_p (&p1, pend, reg_info);
4221 /* Save the position in the string where we were the last time
4222 we were at this open-group operator in case the group is
4223 operated upon by a repetition operator, e.g., with `(a*)*b'
4224 against `ab'; then we want to ignore where we are now in
4225 the string in case this attempt to match fails. */
4226 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4227 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4229 DEBUG_PRINT2 (" old_regstart: %d\n",
4230 POINTER_TO_OFFSET (old_regstart[*p]));
4233 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4235 IS_ACTIVE (reg_info[*p]) = 1;
4236 MATCHED_SOMETHING (reg_info[*p]) = 0;
4238 /* Clear this whenever we change the register activity status. */
4239 set_regs_matched_done = 0;
4241 /* This is the new highest active register. */
4242 highest_active_reg = *p;
4244 /* If nothing was active before, this is the new lowest active
4246 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4247 lowest_active_reg = *p;
4249 /* Move past the register number and inner group count. */
4251 just_past_start_mem = p;
4256 /* The stop_memory opcode represents the end of a group. Its
4257 arguments are the same as start_memory's: the register
4258 number, and the number of inner groups. */
4260 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4262 /* We need to save the string position the last time we were at
4263 this close-group operator in case the group is operated
4264 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4265 against `aba'; then we want to ignore where we are now in
4266 the string in case this attempt to match fails. */
4267 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4268 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4270 DEBUG_PRINT2 (" old_regend: %d\n",
4271 POINTER_TO_OFFSET (old_regend[*p]));
4274 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4276 /* This register isn't active anymore. */
4277 IS_ACTIVE (reg_info[*p]) = 0;
4279 /* Clear this whenever we change the register activity status. */
4280 set_regs_matched_done = 0;
4282 /* If this was the only register active, nothing is active
4284 if (lowest_active_reg == highest_active_reg) {
4285 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4286 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4288 else { /* We must scan for the new highest active register, since
4289 it isn't necessarily one less than now: consider
4290 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4291 new highest active register is 1. */
4292 unsigned char r = *p - 1;
4294 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4297 /* If we end up at register zero, that means that we saved
4298 the registers as the result of an `on_failure_jump', not
4299 a `start_memory', and we jumped to past the innermost
4300 `stop_memory'. For example, in ((.)*) we save
4301 registers 1 and 2 as a result of the *, but when we pop
4302 back to the second ), we are at the stop_memory 1.
4303 Thus, nothing is active. */
4305 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4306 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4309 highest_active_reg = r;
4312 /* If just failed to match something this time around with a
4313 group that's operated on by a repetition operator, try to
4314 force exit from the ``loop'', and restore the register
4315 information for this group that we had before trying this
4317 if ((!MATCHED_SOMETHING (reg_info[*p])
4318 || just_past_start_mem == p - 1)
4319 && (p + 2) < pend) {
4320 boolean is_a_jump_n = false;
4324 switch ((re_opcode_t) * p1++) {
4327 case pop_failure_jump:
4328 case maybe_pop_jump:
4330 case dummy_failure_jump:
4331 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4341 /* If the next operation is a jump backwards in the pattern
4342 to an on_failure_jump right before the start_memory
4343 corresponding to this stop_memory, exit from the loop
4344 by forcing a failure after pushing on the stack the
4345 on_failure_jump's jump in the pattern, and d. */
4346 if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
4347 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
4348 /* If this group ever matched anything, then restore
4349 what its registers were before trying this last
4350 failed match, e.g., with `(a*)*b' against `ab' for
4351 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4352 against `aba' for regend[3].
4354 Also restore the registers for inner groups for,
4355 e.g., `((a*)(b*))*' against `aba' (register 3 would
4356 otherwise get trashed). */
4358 if (EVER_MATCHED_SOMETHING (reg_info[*p])) {
4361 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4363 /* Restore this and inner groups' (if any) registers. */
4364 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1); r++) {
4365 regstart[r] = old_regstart[r];
4367 /* xx why this test? */
4368 if (old_regend[r] >= regstart[r])
4369 regend[r] = old_regend[r];
4373 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4374 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4380 /* Move past the register number and the inner group count. */
4385 /* \<digit> has been turned into a `duplicate' command which is
4386 followed by the numeric value of <digit> as the register number. */
4389 register const char *d2, *dend2;
4390 int regno = *p++; /* Get which register to match against. */
4392 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4394 /* Can't back reference a group which we've never matched. */
4395 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4398 /* Where in input to try to start matching. */
4399 d2 = regstart[regno];
4401 /* Where to stop matching; if both the place to start and
4402 the place to stop matching are in the same string, then
4403 set to the place to stop, otherwise, for now have to use
4404 the end of the first string. */
4406 dend2 = ((FIRST_STRING_P (regstart[regno])
4407 == FIRST_STRING_P (regend[regno]))
4408 ? regend[regno] : end_match_1);
4410 /* If necessary, advance to next segment in register
4412 while (d2 == dend2) {
4413 if (dend2 == end_match_2)
4415 if (dend2 == regend[regno])
4418 /* End of string1 => advance to string2. */
4420 dend2 = regend[regno];
4422 /* At end of register contents => success */
4426 /* If necessary, advance to next segment in data. */
4429 /* How many characters left in this segment to match. */
4432 /* Want how many consecutive characters we can match in
4433 one shot, so, if necessary, adjust the count. */
4434 if (mcnt > dend2 - d2)
4437 /* Compare that many; failure if mismatch, else move
4439 if (translate ? bcmp_translate (d, d2, mcnt, translate)
4440 : bcmp (d, d2, mcnt))
4442 d += mcnt, d2 += mcnt;
4444 /* Do this because we've match some characters. */
4445 SET_REGS_MATCHED ();
4451 /* begline matches the empty string at the beginning of the string
4452 (unless `not_bol' is set in `bufp'), and, if
4453 `newline_anchor' is set, after newlines. */
4455 DEBUG_PRINT1 ("EXECUTING begline.\n");
4457 if (AT_STRINGS_BEG (d)) {
4461 else if (d[-1] == '\n' && bufp->newline_anchor) {
4464 /* In all other cases, we fail. */
4468 /* endline is the dual of begline. */
4470 DEBUG_PRINT1 ("EXECUTING endline.\n");
4472 if (AT_STRINGS_END (d)) {
4477 /* We have to ``prefetch'' the next character. */
4478 else if ((d == end1 ? *string2 : *d) == '\n' && bufp->newline_anchor) {
4484 /* Match at the very beginning of the data. */
4486 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4487 if (AT_STRINGS_BEG (d))
4492 /* Match at the very end of the data. */
4494 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4495 if (AT_STRINGS_END (d))
4500 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4501 pushes NULL as the value for the string on the stack. Then
4502 `pop_failure_point' will keep the current value for the
4503 string, instead of restoring it. To see why, consider
4504 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4505 then the . fails against the \n. But the next thing we want
4506 to do is match the \n against the \n; if we restored the
4507 string value, we would be back at the foo.
4509 Because this is used only in specific cases, we don't need to
4510 check all the things that `on_failure_jump' does, to make
4511 sure the right things get saved on the stack. Hence we don't
4512 share its code. The only reason to push anything on the
4513 stack at all is that otherwise we would have to change
4514 `anychar's code to do something besides goto fail in this
4515 case; that seems worse than this. */
4516 case on_failure_keep_string_jump:
4517 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4519 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4521 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4523 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4526 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4530 /* Uses of on_failure_jump:
4532 Each alternative starts with an on_failure_jump that points
4533 to the beginning of the next alternative. Each alternative
4534 except the last ends with a jump that in effect jumps past
4535 the rest of the alternatives. (They really jump to the
4536 ending jump of the following alternative, because tensioning
4537 these jumps is a hassle.)
4539 Repeats start with an on_failure_jump that points past both
4540 the repetition text and either the following jump or
4541 pop_failure_jump back to this on_failure_jump. */
4542 case on_failure_jump:
4544 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4546 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4548 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4550 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4553 /* If this on_failure_jump comes right before a group (i.e.,
4554 the original * applied to a group), save the information
4555 for that group and all inner ones, so that if we fail back
4556 to this point, the group's information will be correct.
4557 For example, in \(a*\)*\1, we need the preceding group,
4558 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4560 /* We can't use `p' to check ahead because we push
4561 a failure point to `p + mcnt' after we do this. */
4564 /* We need to skip no_op's before we look for the
4565 start_memory in case this on_failure_jump is happening as
4566 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4568 while (p1 < pend && (re_opcode_t) * p1 == no_op)
4571 if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
4572 /* We have a new highest active register now. This will
4573 get reset at the start_memory we are about to get to,
4574 but we will have saved all the registers relevant to
4575 this repetition op, as described above. */
4576 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4577 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4578 lowest_active_reg = *(p1 + 1);
4581 DEBUG_PRINT1 (":\n");
4582 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4586 /* A smart repeat ends with `maybe_pop_jump'.
4587 We change it to either `pop_failure_jump' or `jump'. */
4588 case maybe_pop_jump:
4589 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4590 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4592 register unsigned char *p2 = p;
4594 /* Compare the beginning of the repeat with what in the
4595 pattern follows its end. If we can establish that there
4596 is nothing that they would both match, i.e., that we
4597 would have to backtrack because of (as in, e.g., `a*a')
4598 then we can change to pop_failure_jump, because we'll
4599 never have to backtrack.
4601 This is not true in the case of alternatives: in
4602 `(a|ab)*' we do need to backtrack to the `ab' alternative
4603 (e.g., if the string was `ab'). But instead of trying to
4604 detect that here, the alternative has put on a dummy
4605 failure point which is what we will end up popping. */
4607 /* Skip over open/close-group commands.
4608 If what follows this loop is a ...+ construct,
4609 look at what begins its body, since we will have to
4610 match at least one of that. */
4613 && ((re_opcode_t) * p2 == stop_memory
4614 || (re_opcode_t) * p2 == start_memory))
4616 else if (p2 + 6 < pend && (re_opcode_t) * p2 == dummy_failure_jump)
4623 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4624 to the `maybe_finalize_jump' of this case. Examine what
4627 /* If we're at the end of the pattern, we can change. */
4629 /* Consider what happens when matching ":\(.*\)"
4630 against ":/". I don't really understand this code
4632 p[-3] = (unsigned char) pop_failure_jump;
4633 DEBUG_PRINT1 (" End of pattern: change to `pop_failure_jump'.\n");
4636 else if ((re_opcode_t) * p2 == exactn
4637 || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) {
4638 register unsigned char c
4639 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4641 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
4642 p[-3] = (unsigned char) pop_failure_jump;
4643 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", c, p1[5]);
4646 else if ((re_opcode_t) p1[3] == charset
4647 || (re_opcode_t) p1[3] == charset_not) {
4648 int not = (re_opcode_t) p1[3] == charset_not;
4650 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4651 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4654 /* `not' is equal to 1 if c would match, which means
4655 that we can't change to pop_failure_jump. */
4657 p[-3] = (unsigned char) pop_failure_jump;
4658 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4662 else if ((re_opcode_t) * p2 == charset) {
4664 register unsigned char c
4665 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4669 if ((re_opcode_t) p1[3] == exactn
4670 && !((int) p2[1] * BYTEWIDTH > (int) p1[5]
4671 && (p2[2 + p1[5] / BYTEWIDTH]
4672 & (1 << (p1[5] % BYTEWIDTH)))))
4674 if ((re_opcode_t) p1[3] == exactn
4675 && !((int) p2[1] * BYTEWIDTH > (int) p1[4]
4676 && (p2[2 + p1[4] / BYTEWIDTH]
4677 & (1 << (p1[4] % BYTEWIDTH)))))
4680 p[-3] = (unsigned char) pop_failure_jump;
4681 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", c, p1[5]);
4684 else if ((re_opcode_t) p1[3] == charset_not) {
4687 /* We win if the charset_not inside the loop
4688 lists every character listed in the charset after. */
4689 for (idx = 0; idx < (int) p2[1]; idx++)
4690 if (!(p2[2 + idx] == 0 || (idx < (int) p1[4]
4691 && ((p2[2 + idx] & ~p1[5 + idx]) ==
4696 p[-3] = (unsigned char) pop_failure_jump;
4697 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4700 else if ((re_opcode_t) p1[3] == charset) {
4703 /* We win if the charset inside the loop
4704 has no overlap with the one after the loop. */
4705 for (idx = 0; idx < (int) p2[1] && idx < (int) p1[4]; idx++)
4706 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4709 if (idx == p2[1] || idx == p1[4]) {
4710 p[-3] = (unsigned char) pop_failure_jump;
4711 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4716 p -= 2; /* Point at relative address again. */
4717 if ((re_opcode_t) p[-1] != pop_failure_jump) {
4718 p[-1] = (unsigned char) jump;
4719 DEBUG_PRINT1 (" Match => jump.\n");
4720 goto unconditional_jump;
4722 /* Note fall through. */
4725 /* The end of a simple repeat has a pop_failure_jump back to
4726 its matching on_failure_jump, where the latter will push a
4727 failure point. The pop_failure_jump takes off failure
4728 points put on by this pop_failure_jump's matching
4729 on_failure_jump; we got through the pattern to here from the
4730 matching on_failure_jump, so didn't fail. */
4731 case pop_failure_jump:
4733 /* We need to pass separate storage for the lowest and
4734 highest registers, even though we don't care about the
4735 actual values. Otherwise, we will restore only one
4736 register from the stack, since lowest will == highest in
4737 `pop_failure_point'. */
4738 active_reg_t dummy_low_reg, dummy_high_reg;
4739 unsigned char *pdummy;
4742 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4743 POP_FAILURE_POINT (sdummy, pdummy,
4744 dummy_low_reg, dummy_high_reg,
4745 reg_dummy, reg_dummy, reg_info_dummy);
4747 /* Note fall through. */
4751 DEBUG_PRINT2 ("\n%p: ", p);
4753 DEBUG_PRINT2 ("\n0x%x: ", p);
4755 /* Note fall through. */
4757 /* Unconditionally jump (without popping any failure points). */
4759 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4760 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4761 p += mcnt; /* Do the jump. */
4763 DEBUG_PRINT2 ("(to %p).\n", p);
4765 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4770 /* We need this opcode so we can detect where alternatives end
4771 in `group_match_null_string_p' et al. */
4773 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4774 goto unconditional_jump;
4777 /* Normally, the on_failure_jump pushes a failure point, which
4778 then gets popped at pop_failure_jump. We will end up at
4779 pop_failure_jump, also, and with a pattern of, say, `a+', we
4780 are skipping over the on_failure_jump, so we have to push
4781 something meaningless for pop_failure_jump to pop. */
4782 case dummy_failure_jump:
4783 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4784 /* It doesn't matter what we push for the string here. What
4785 the code at `fail' tests is the value for the pattern. */
4786 PUSH_FAILURE_POINT (0, 0, -2);
4787 goto unconditional_jump;
4790 /* At the end of an alternative, we need to push a dummy failure
4791 point in case we are followed by a `pop_failure_jump', because
4792 we don't want the failure point for the alternative to be
4793 popped. For example, matching `(a|ab)*' against `aab'
4794 requires that we match the `ab' alternative. */
4795 case push_dummy_failure:
4796 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4797 /* See comments just above at `dummy_failure_jump' about the
4799 PUSH_FAILURE_POINT (0, 0, -2);
4802 /* Have to succeed matching what follows at least n times.
4803 After that, handle like `on_failure_jump'. */
4805 EXTRACT_NUMBER (mcnt, p + 2);
4806 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4809 /* Originally, this is how many times we HAVE to succeed. */
4813 STORE_NUMBER_AND_INCR (p, mcnt);
4815 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4817 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4820 else if (mcnt == 0) {
4822 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p + 2);
4824 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p + 2);
4826 p[2] = (unsigned char) no_op;
4827 p[3] = (unsigned char) no_op;
4833 EXTRACT_NUMBER (mcnt, p + 2);
4834 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4836 /* Originally, this is how many times we CAN jump. */
4839 STORE_NUMBER (p + 2, mcnt);
4841 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4843 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4845 goto unconditional_jump;
4847 /* If don't have to jump any more, skip over the rest of command. */
4854 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4856 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4858 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4860 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4862 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4864 STORE_NUMBER (p1, mcnt);
4869 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4870 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4871 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4872 macro and introducing temporary variables works around the bug. */
4875 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4876 if (AT_WORD_BOUNDARY (d))
4881 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4882 if (AT_WORD_BOUNDARY (d))
4888 boolean prevchar, thischar;
4890 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4891 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4894 prevchar = WORDCHAR_P (d - 1);
4895 thischar = WORDCHAR_P (d);
4896 if (prevchar != thischar)
4903 boolean prevchar, thischar;
4905 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4906 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4909 prevchar = WORDCHAR_P (d - 1);
4910 thischar = WORDCHAR_P (d);
4911 if (prevchar != thischar)
4918 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4919 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
4924 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4925 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4926 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
4932 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4933 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4938 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4939 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4944 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4945 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4950 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4955 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4959 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4961 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4963 SET_REGS_MATCHED ();
4967 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4969 goto matchnotsyntax;
4972 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4976 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4978 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4980 SET_REGS_MATCHED ();
4983 #else /* not emacs */
4985 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4987 if (!WORDCHAR_P (d))
4989 SET_REGS_MATCHED ();
4994 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4998 SET_REGS_MATCHED ();
5001 #endif /* not emacs */
5006 continue; /* Successfully executed one pattern command; keep going. */
5009 /* We goto here if a matching operation fails. */
5011 if (!FAIL_STACK_EMPTY ()) { /* A restart point is known. Restore to that state. */
5012 DEBUG_PRINT1 ("\nFAIL:\n");
5013 POP_FAILURE_POINT (d, p,
5014 lowest_active_reg, highest_active_reg,
5015 regstart, regend, reg_info);
5017 /* If this failure point is a dummy, try the next one. */
5021 /* If we failed to the end of the pattern, don't examine *p. */
5024 boolean is_a_jump_n = false;
5026 /* If failed to a backwards jump that's part of a repetition
5027 loop, need to pop this failure point and use the next one. */
5028 switch ((re_opcode_t) * p) {
5031 case maybe_pop_jump:
5032 case pop_failure_jump:
5035 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5038 if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
5039 || (!is_a_jump_n && (re_opcode_t) * p1 == on_failure_jump))
5047 if (d >= string1 && d <= end1)
5051 break; /* Matching at this starting point really fails. */
5055 goto restore_best_regs;
5057 mem_free_VARIABLES ();
5059 return -1; /* Failure to match. */
5062 /* Subroutine definitions for re_match_2. */
5065 /* We are passed P pointing to a register number after a start_memory.
5067 Return true if the pattern up to the corresponding stop_memory can
5068 match the empty string, and false otherwise.
5070 If we find the matching stop_memory, sets P to point to one past its number.
5071 Otherwise, sets P to an undefined byte less than or equal to END.
5073 We don't handle duplicates properly (yet). */
5075 static boolean group_match_null_string_p (p, end, reg_info)
5076 unsigned char **p, *end;
5077 register_info_type *reg_info;
5081 /* Point to after the args to the start_memory. */
5082 unsigned char *p1 = *p + 2;
5085 /* Skip over opcodes that can match nothing, and return true or
5086 false, as appropriate, when we get to one that can't, or to the
5087 matching stop_memory. */
5089 switch ((re_opcode_t) * p1) {
5090 /* Could be either a loop or a series of alternatives. */
5091 case on_failure_jump:
5093 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5095 /* If the next operation is not a jump backwards in the
5099 /* Go through the on_failure_jumps of the alternatives,
5100 seeing if any of the alternatives cannot match nothing.
5101 The last alternative starts with only a jump,
5102 whereas the rest start with on_failure_jump and end
5103 with a jump, e.g., here is the pattern for `a|b|c':
5105 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5106 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5109 So, we have to first go through the first (n-1)
5110 alternatives and then deal with the last one separately. */
5113 /* Deal with the first (n-1) alternatives, which start
5114 with an on_failure_jump (see above) that jumps to right
5115 past a jump_past_alt. */
5117 while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
5118 /* `mcnt' holds how many bytes long the alternative
5119 is, including the ending `jump_past_alt' and
5122 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, reg_info))
5125 /* Move to right after this alternative, including the
5129 /* Break if it's the beginning of an n-th alternative
5130 that doesn't begin with an on_failure_jump. */
5131 if ((re_opcode_t) * p1 != on_failure_jump)
5134 /* Still have to check that it's not an n-th
5135 alternative that starts with an on_failure_jump. */
5137 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5138 if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
5139 /* Get to the beginning of the n-th alternative. */
5145 /* Deal with the last alternative: go back and get number
5146 of the `jump_past_alt' just before it. `mcnt' contains
5147 the length of the alternative. */
5148 EXTRACT_NUMBER (mcnt, p1 - 2);
5150 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5153 p1 += mcnt; /* Get past the n-th alternative. */
5159 assert (p1[1] == **p);
5165 if (!common_op_match_null_string_p (&p1, end, reg_info))
5168 } /* while p1 < end */
5171 } /* group_match_null_string_p */
5174 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5175 It expects P to be the first byte of a single alternative and END one
5176 byte past the last. The alternative can contain groups. */
5178 static boolean alt_match_null_string_p (p, end, reg_info)
5179 unsigned char *p, *end;
5180 register_info_type *reg_info;
5183 unsigned char *p1 = p;
5186 /* Skip over opcodes that can match nothing, and break when we get
5187 to one that can't. */
5189 switch ((re_opcode_t) * p1) {
5191 case on_failure_jump:
5193 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5198 if (!common_op_match_null_string_p (&p1, end, reg_info))
5201 } /* while p1 < end */
5204 } /* alt_match_null_string_p */
5207 /* Deals with the ops common to group_match_null_string_p and
5208 alt_match_null_string_p.
5210 Sets P to one after the op and its arguments, if any. */
5212 static boolean common_op_match_null_string_p (p, end, reg_info)
5213 unsigned char **p, *end;
5214 register_info_type *reg_info;
5219 unsigned char *p1 = *p;
5221 switch ((re_opcode_t) * p1++) {
5240 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5241 ret = group_match_null_string_p (&p1, end, reg_info);
5243 /* Have to set this here in case we're checking a group which
5244 contains a group and a back reference to it. */
5246 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5247 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5253 /* If this is an optimized succeed_n for zero times, make the jump. */
5255 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5263 /* Get to the number of times to succeed. */
5265 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5269 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5277 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5285 /* All other opcodes mean we cannot match the empty string. */
5291 } /* common_op_match_null_string_p */
5294 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5295 bytes; nonzero otherwise. */
5297 static int bcmp_translate (s1, s2, len, translate)
5298 const char *s1, *s2;
5300 RE_TRANSLATE_TYPE translate;
5302 register const unsigned char *p1 = (const unsigned char *) s1;
5303 register const unsigned char *p2 = (const unsigned char *) s2;
5306 if (translate[*p1++] != translate[*p2++])
5313 /* Entry points for GNU code. */
5315 /* re_compile_pattern is the GNU regular expression compiler: it
5316 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5317 Returns 0 if the pattern was valid, otherwise an error string.
5319 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5320 are set in BUFP on entry.
5322 We call regex_compile to do the actual compilation. */
5324 const char *re_compile_pattern (pattern, length, bufp)
5325 const char *pattern;
5327 struct re_pattern_buffer *bufp;
5331 /* GNU code is written to assume at least RE_NREGS registers will be set
5332 (and at least one extra will be -1). */
5333 bufp->regs_allocated = REGS_UNALLOCATED;
5335 /* And GNU code determines whether or not to get register information
5336 by passing null for the REGS argument to re_match, etc., not by
5340 /* Match anchors at newline. */
5341 bufp->newline_anchor = 1;
5343 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5347 return gettext (re_error_msgid[(int) ret]);
5350 /* Entry points compatible with 4.2 BSD regex library. We don't define
5351 them unless specifically requested. */
5353 #if defined (_REGEX_RE_COMP) || defined (_LIBC)
5355 /* BSD has one and only one pattern buffer. */
5356 static struct re_pattern_buffer re_comp_buf;
5360 /* Make these definitions weak in libc, so POSIX programs can redefine
5361 these names if they don't use our functions, and still use
5362 regcomp/regexec below without link errors. */
5371 if (!re_comp_buf.buffer)
5372 return gettext ("No previous regular expression");
5376 if (!re_comp_buf.buffer) {
5377 re_comp_buf.buffer = (unsigned char *) malloc (200); /* __MEM_CHECKED__ */
5378 if (re_comp_buf.buffer == NULL)
5379 return gettext (re_error_msgid[(int) REG_ESPACE]);
5380 re_comp_buf.allocated = 200;
5382 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); /* __MEM_CHECKED__ */
5383 if (re_comp_buf.fastmap == NULL)
5384 return gettext (re_error_msgid[(int) REG_ESPACE]);
5387 /* Since `re_exec' always passes NULL for the `regs' argument, we
5388 don't need to initialize the pattern buffer fields which affect it. */
5390 /* Match anchors at newlines. */
5391 re_comp_buf.newline_anchor = 1;
5393 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5398 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5399 return (char *) gettext (re_error_msgid[(int) ret]);
5410 const int len = strlen (s);
5413 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5416 #endif /* _REGEX_RE_COMP */
5418 /* POSIX.2 functions. Don't define these for Emacs. */
5422 /* regcomp takes a regular expression as a string and compiles it.
5424 PREG is a regex_t *. We do not expect any fields to be initialized,
5425 since POSIX says we shouldn't. Thus, we set
5427 `buffer' to the compiled pattern;
5428 `used' to the length of the compiled pattern;
5429 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5430 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5431 RE_SYNTAX_POSIX_BASIC;
5432 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5433 `fastmap' and `fastmap_accurate' to zero;
5434 `re_nsub' to the number of subexpressions in PATTERN.
5436 PATTERN is the address of the pattern string.
5438 CFLAGS is a series of bits which affect compilation.
5440 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5441 use POSIX basic syntax.
5443 If REG_NEWLINE is set, then . and [^...] don't match newline.
5444 Also, regexec will try a match beginning after every newline.
5446 If REG_ICASE is set, then we considers upper- and lowercase
5447 versions of letters to be equivalent when matching.
5449 If REG_NOSUB is set, then when PREG is passed to regexec, that
5450 routine will report only success or failure, and nothing about the
5453 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5454 the return codes and their meanings.) */
5456 int regcomp (preg, pattern, cflags)
5458 const char *pattern;
5463 = (cflags & REG_EXTENDED) ?
5464 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5466 /* regex_compile will allocate the space for the compiled pattern. */
5468 preg->allocated = 0;
5471 /* Don't bother to use a fastmap when searching. This simplifies the
5472 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5473 characters after newlines into the fastmap. This way, we just try
5477 if (cflags & REG_ICASE) {
5480 preg->translate = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE /* __MEM_CHECKED__ */
5482 sizeof (*(RE_TRANSLATE_TYPE)
5484 if (preg->translate == NULL)
5485 return (int) REG_ESPACE;
5487 /* Map uppercase characters to corresponding lowercase ones. */
5488 for (i = 0; i < CHAR_SET_SIZE; i++)
5489 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5492 preg->translate = NULL;
5494 /* If REG_NEWLINE is set, newlines are treated differently. */
5495 if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5496 syntax &= ~RE_DOT_NEWLINE;
5497 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5498 /* It also changes the matching behavior. */
5499 preg->newline_anchor = 1;
5502 preg->newline_anchor = 0;
5504 preg->no_sub = !!(cflags & REG_NOSUB);
5506 /* POSIX says a null character in the pattern terminates it, so we
5507 can use strlen here in compiling the pattern. */
5508 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5510 /* POSIX doesn't distinguish between an unmatched open-group and an
5511 unmatched close-group: both are REG_EPAREN. */
5512 if (ret == REG_ERPAREN)
5519 /* regexec searches for a given pattern, specified by PREG, in the
5522 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5523 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5524 least NMATCH elements, and we set them to the offsets of the
5525 corresponding matched substrings.
5527 EFLAGS specifies `execution flags' which affect matching: if
5528 REG_NOTBOL is set, then ^ does not match at the beginning of the
5529 string; if REG_NOTEOL is set, then $ does not match at the end.
5531 We return 0 if we find a match and REG_NOMATCH if not. */
5533 int regexec (preg, string, nmatch, pmatch, eflags)
5534 const regex_t *preg;
5537 regmatch_t pmatch[];
5541 struct re_registers regs;
5542 regex_t private_preg;
5543 int len = strlen (string);
5544 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5546 private_preg = *preg;
5548 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5549 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5551 /* The user has told us exactly how many registers to return
5552 information about, via `nmatch'. We have to pass that on to the
5553 matching routines. */
5554 private_preg.regs_allocated = REGS_FIXED;
5556 if (want_reg_info) {
5557 regs.num_regs = nmatch;
5558 regs.start = TALLOC (nmatch, regoff_t);
5559 regs.end = TALLOC (nmatch, regoff_t);
5560 if (regs.start == NULL || regs.end == NULL)
5561 return (int) REG_NOMATCH;
5564 /* Perform the searching operation. */
5565 ret = re_search (&private_preg, string, len,
5566 /* start: */ 0, /* range: */ len,
5567 want_reg_info ? ®s : (struct re_registers *) 0);
5569 /* Copy the register information to the POSIX structure. */
5570 if (want_reg_info) {
5574 for (r = 0; r < nmatch; r++) {
5575 pmatch[r].rm_so = regs.start[r];
5576 pmatch[r].rm_eo = regs.end[r];
5580 /* If we needed the temporary register info, free the space now. */
5581 free (regs.start); /* __MEM_CHECKED__ */
5582 free (regs.end); /* __MEM_CHECKED__ */
5585 /* We want zero return to mean success, unlike `re_search'. */
5586 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5590 /* Returns a message corresponding to an error code, ERRCODE, returned
5591 from either regcomp or regexec. We don't use PREG here. */
5593 size_t regerror (errcode, preg, errbuf, errbuf_size)
5595 const regex_t *preg;
5602 if (errcode < 0 || errcode >= (int) (sizeof (re_error_msgid)
5603 / sizeof (re_error_msgid[0])))
5604 /* Only error codes returned by the rest of the code should be passed
5605 to this routine. If we are given anything else, or if other regex
5606 code generates an invalid error code, then the program has a bug.
5607 Dump core so we can fix it. */
5610 msg = gettext (re_error_msgid[errcode]);
5612 msg_size = strlen (msg) + 1; /* Includes the null. */
5614 if (errbuf_size != 0) {
5615 if (msg_size > errbuf_size) {
5616 strncpy (errbuf, msg, errbuf_size - 1);
5617 errbuf[errbuf_size - 1] = 0;
5620 strcpy (errbuf, msg); /* __STRCPY_CHECKED__ */
5627 /* Free dynamically allocated space used by PREG. */
5632 if (preg->buffer != NULL)
5633 free (preg->buffer); /* __MEM_CHECKED__ */
5634 preg->buffer = NULL;
5636 preg->allocated = 0;
5639 if (preg->fastmap != NULL)
5640 free (preg->fastmap); /* __MEM_CHECKED__ */
5641 preg->fastmap = NULL;
5642 preg->fastmap_accurate = 0;
5644 if (preg->translate != NULL)
5645 free (preg->translate); /* __MEM_CHECKED__ */
5646 preg->translate = NULL;
5649 #endif /* not emacs */