+++ /dev/null
-/*
-** This file contains all sources (including headers) to the LEMON
-** LALR(1) parser generator. The sources have been combined into a
-** single file to make it easy to include LEMON in the source tree
-** and Makefile of another program.
-**
-** The author of this program disclaims copyright.
-*/
-#include <stdio.h>
-#include <stdarg.h>
-#include <string.h>
-#include <ctype.h>
-#include <stdlib.h>
-#include <unistd.h>
-
-#ifndef __WIN32__
-# if defined(_WIN32) || defined(WIN32)
-# define __WIN32__
-# endif
-#endif
-
-/* #define PRIVATE static */
-#define PRIVATE
-
-#ifdef TEST
-#define MAXRHS 5 /* Set low to exercise exception code */
-#else
-#define MAXRHS 1000
-#endif
-
-char *msort();
-extern void *malloc();
-
-/******** From the file "action.h" *************************************/
-struct action *Action_new();
-struct action *Action_sort();
-
-/********* From the file "assert.h" ************************************/
-void myassert();
-#ifndef NDEBUG
-# define assert(X) if(!(X))myassert(__FILE__,__LINE__)
-#else
-# define assert(X)
-#endif
-
-/********** From the file "build.h" ************************************/
-void FindRulePrecedences();
-void FindFirstSets();
-void FindStates();
-void FindLinks();
-void FindFollowSets();
-void FindActions();
-
-/********* From the file "configlist.h" *********************************/
-void Configlist_init(/* void */);
-struct config *Configlist_add(/* struct rule *, int */);
-struct config *Configlist_addbasis(/* struct rule *, int */);
-void Configlist_closure(/* void */);
-void Configlist_sort(/* void */);
-void Configlist_sortbasis(/* void */);
-struct config *Configlist_return(/* void */);
-struct config *Configlist_basis(/* void */);
-void Configlist_eat(/* struct config * */);
-void Configlist_reset(/* void */);
-
-/********* From the file "error.h" ***************************************/
-void ErrorMsg(const char *, int,const char *, ...);
-
-/****** From the file "option.h" ******************************************/
-struct s_options {
- enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
- OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
- char *label;
- char *arg;
- char *message;
-};
-int OptInit(/* char**,struct s_options*,FILE* */);
-int OptNArgs(/* void */);
-char *OptArg(/* int */);
-void OptErr(/* int */);
-void OptPrint(/* void */);
-
-/******** From the file "parse.h" *****************************************/
-void Parse(/* struct lemon *lemp */);
-
-/********* From the file "plink.h" ***************************************/
-struct plink *Plink_new(/* void */);
-void Plink_add(/* struct plink **, struct config * */);
-void Plink_copy(/* struct plink **, struct plink * */);
-void Plink_delete(/* struct plink * */);
-
-/********** From the file "report.h" *************************************/
-void Reprint(/* struct lemon * */);
-void ReportOutput(/* struct lemon * */);
-void ReportTable(/* struct lemon * */);
-void ReportHeader(/* struct lemon * */);
-void CompressTables(/* struct lemon * */);
-void ResortStates(/* struct lemon * */);
-
-/********** From the file "set.h" ****************************************/
-void SetSize(/* int N */); /* All sets will be of size N */
-char *SetNew(/* void */); /* A new set for element 0..N */
-void SetFree(/* char* */); /* Deallocate a set */
-
-int SetAdd(/* char*,int */); /* Add element to a set */
-int SetUnion(/* char *A,char *B */); /* A <- A U B, thru element N */
-
-#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
-
-/********** From the file "struct.h" *************************************/
-/*
-** Principal data structures for the LEMON parser generator.
-*/
-
-typedef enum {B_FALSE=0, B_TRUE} Boolean;
-
-/* Symbols (terminals and nonterminals) of the grammar are stored
-** in the following: */
-struct symbol {
- char *name; /* Name of the symbol */
- int index; /* Index number for this symbol */
- enum {
- TERMINAL,
- NONTERMINAL,
- MULTITERMINAL
- } type; /* Symbols are all either TERMINALS or NTs */
- struct rule *rule; /* Linked list of rules of this (if an NT) */
- struct symbol *fallback; /* fallback token in case this token doesn't parse */
- int prec; /* Precedence if defined (-1 otherwise) */
- enum e_assoc {
- LEFT,
- RIGHT,
- NONE,
- UNK
- } assoc; /* Associativity if predecence is defined */
- char *firstset; /* First-set for all rules of this symbol */
- Boolean lambda; /* True if NT and can generate an empty string */
- char *destructor; /* Code which executes whenever this symbol is
- ** popped from the stack during error processing */
- int destructorln; /* Line number of destructor code */
- char *datatype; /* The data type of information held by this
- ** object. Only used if type==NONTERMINAL */
- int dtnum; /* The data type number. In the parser, the value
- ** stack is a union. The .yy%d element of this
- ** union is the correct data type for this object */
- /* The following fields are used by MULTITERMINALs only */
- int nsubsym; /* Number of constituent symbols in the MULTI */
- struct symbol **subsym; /* Array of constituent symbols */
-};
-
-/* Each production rule in the grammar is stored in the following
-** structure. */
-struct rule {
- struct symbol *lhs; /* Left-hand side of the rule */
- char *lhsalias; /* Alias for the LHS (NULL if none) */
- int ruleline; /* Line number for the rule */
- int nrhs; /* Number of RHS symbols */
- struct symbol **rhs; /* The RHS symbols */
- char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
- int line; /* Line number at which code begins */
- char *code; /* The code executed when this rule is reduced */
- struct symbol *precsym; /* Precedence symbol for this rule */
- int index; /* An index number for this rule */
- Boolean canReduce; /* True if this rule is ever reduced */
- struct rule *nextlhs; /* Next rule with the same LHS */
- struct rule *next; /* Next rule in the global list */
-};
-
-/* A configuration is a production rule of the grammar together with
-** a mark (dot) showing how much of that rule has been processed so far.
-** Configurations also contain a follow-set which is a list of terminal
-** symbols which are allowed to immediately follow the end of the rule.
-** Every configuration is recorded as an instance of the following: */
-struct config {
- struct rule *rp; /* The rule upon which the configuration is based */
- int dot; /* The parse point */
- char *fws; /* Follow-set for this configuration only */
- struct plink *fplp; /* Follow-set forward propagation links */
- struct plink *bplp; /* Follow-set backwards propagation links */
- struct state *stp; /* Pointer to state which contains this */
- enum {
- COMPLETE, /* The status is used during followset and */
- INCOMPLETE /* shift computations */
- } status;
- struct config *next; /* Next configuration in the state */
- struct config *bp; /* The next basis configuration */
-};
-
-/* Every shift or reduce operation is stored as one of the following */
-struct action {
- struct symbol *sp; /* The look-ahead symbol */
- enum e_action {
- SHIFT,
- ACCEPT,
- REDUCE,
- ERROR,
- CONFLICT, /* Was a reduce, but part of a conflict */
- SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
- RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
- NOT_USED /* Deleted by compression */
- } type;
- union {
- struct state *stp; /* The new state, if a shift */
- struct rule *rp; /* The rule, if a reduce */
- } x;
- struct action *next; /* Next action for this state */
- struct action *collide; /* Next action with the same hash */
-};
-
-/* Each state of the generated parser's finite state machine
-** is encoded as an instance of the following structure. */
-struct state {
- struct config *bp; /* The basis configurations for this state */
- struct config *cfp; /* All configurations in this set */
- int statenum; /* Sequencial number for this state */
- struct action *ap; /* Array of actions for this state */
- int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
- int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
- int iDflt; /* Default action */
-};
-#define NO_OFFSET (-2147483647)
-
-/* A followset propagation link indicates that the contents of one
-** configuration followset should be propagated to another whenever
-** the first changes. */
-struct plink {
- struct config *cfp; /* The configuration to which linked */
- struct plink *next; /* The next propagate link */
-};
-
-/* The state vector for the entire parser generator is recorded as
-** follows. (LEMON uses no global variables and makes little use of
-** static variables. Fields in the following structure can be thought
-** of as begin global variables in the program.) */
-struct lemon {
- struct state **sorted; /* Table of states sorted by state number */
- struct rule *rule; /* List of all rules */
- int nstate; /* Number of states */
- int nrule; /* Number of rules */
- int nsymbol; /* Number of terminal and nonterminal symbols */
- int nterminal; /* Number of terminal symbols */
- struct symbol **symbols; /* Sorted array of pointers to symbols */
- int errorcnt; /* Number of errors */
- struct symbol *errsym; /* The error symbol */
- struct symbol *wildcard; /* Token that matches anything */
- char *name; /* Name of the generated parser */
- char *arg; /* Declaration of the 3th argument to parser */
- char *tokentype; /* Type of terminal symbols in the parser stack */
- char *vartype; /* The default type of non-terminal symbols */
- char *start; /* Name of the start symbol for the grammar */
- char *stacksize; /* Size of the parser stack */
- char *include; /* Code to put at the start of the C file */
- int includeln; /* Line number for start of include code */
- char *error; /* Code to execute when an error is seen */
- int errorln; /* Line number for start of error code */
- char *overflow; /* Code to execute on a stack overflow */
- int overflowln; /* Line number for start of overflow code */
- char *failure; /* Code to execute on parser failure */
- int failureln; /* Line number for start of failure code */
- char *accept; /* Code to execute when the parser excepts */
- int acceptln; /* Line number for the start of accept code */
- char *extracode; /* Code appended to the generated file */
- int extracodeln; /* Line number for the start of the extra code */
- char *tokendest; /* Code to execute to destroy token data */
- int tokendestln; /* Line number for token destroyer code */
- char *vardest; /* Code for the default non-terminal destructor */
- int vardestln; /* Line number for default non-term destructor code*/
- char *filename; /* Name of the input file */
- char *outname; /* Name of the current output file */
- char *tokenprefix; /* A prefix added to token names in the .h file */
- int nconflict; /* Number of parsing conflicts */
- int tablesize; /* Size of the parse tables */
- int basisflag; /* Print only basis configurations */
- int has_fallback; /* True if any %fallback is seen in the grammer */
- char *argv0; /* Name of the program */
-};
-
-#define MemoryCheck(X) if((X)==0){ \
- extern void memory_error(); \
- memory_error(); \
-}
-
-/**************** From the file "table.h" *********************************/
-/*
-** All code in this file has been automatically generated
-** from a specification in the file
-** "table.q"
-** by the associative array code building program "aagen".
-** Do not edit this file! Instead, edit the specification
-** file, then rerun aagen.
-*/
-/*
-** Code for processing tables in the LEMON parser generator.
-*/
-
-/* Routines for handling a strings */
-
-char *Strsafe();
-
-void Strsafe_init(/* void */);
-int Strsafe_insert(/* char * */);
-char *Strsafe_find(/* char * */);
-
-/* Routines for handling symbols of the grammar */
-
-struct symbol *Symbol_new();
-int Symbolcmpp(/* struct symbol **, struct symbol ** */);
-void Symbol_init(/* void */);
-int Symbol_insert(/* struct symbol *, char * */);
-struct symbol *Symbol_find(/* char * */);
-struct symbol *Symbol_Nth(/* int */);
-int Symbol_count(/* */);
-struct symbol **Symbol_arrayof(/* */);
-
-/* Routines to manage the state table */
-
-int Configcmp(/* struct config *, struct config * */);
-struct state *State_new();
-void State_init(/* void */);
-int State_insert(/* struct state *, struct config * */);
-struct state *State_find(/* struct config * */);
-struct state **State_arrayof(/* */);
-
-/* Routines used for efficiency in Configlist_add */
-
-void Configtable_init(/* void */);
-int Configtable_insert(/* struct config * */);
-struct config *Configtable_find(/* struct config * */);
-void Configtable_clear(/* int(*)(struct config *) */);
-/****************** From the file "action.c" *******************************/
-/*
-** Routines processing parser actions in the LEMON parser generator.
-*/
-
-/* Allocate a new parser action */
-struct action *Action_new(){
- static struct action *freelist = 0;
- struct action *new;
-
- if( freelist==0 ){
- int i;
- int amt = 100;
- freelist = (struct action *)malloc( sizeof(struct action)*amt );
- if( freelist==0 ){
- fprintf(stderr,"Unable to allocate memory for a new parser action.");
- exit(1);
- }
- for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
- freelist[amt-1].next = 0;
- }
- new = freelist;
- freelist = freelist->next;
- return new;
-}
-
-/* Compare two actions */
-static int actioncmp(ap1,ap2)
-struct action *ap1;
-struct action *ap2;
-{
- int rc;
- rc = ap1->sp->index - ap2->sp->index;
- if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
- if( rc==0 ){
- assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
- assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
- rc = ap1->x.rp->index - ap2->x.rp->index;
- }
- return rc;
-}
-
-/* Sort parser actions */
-struct action *Action_sort(ap)
-struct action *ap;
-{
- ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp);
- return ap;
-}
-
-void Action_add(app,type,sp,arg)
-struct action **app;
-enum e_action type;
-struct symbol *sp;
-char *arg;
-{
- struct action *new;
- new = Action_new();
- new->next = *app;
- *app = new;
- new->type = type;
- new->sp = sp;
- if( type==SHIFT ){
- new->x.stp = (struct state *)arg;
- }else{
- new->x.rp = (struct rule *)arg;
- }
-}
-/********************** New code to implement the "acttab" module ***********/
-/*
-** This module implements routines use to construct the yy_action[] table.
-*/
-
-/*
-** The state of the yy_action table under construction is an instance of
-** the following structure
-*/
-typedef struct acttab acttab;
-struct acttab {
- int nAction; /* Number of used slots in aAction[] */
- int nActionAlloc; /* Slots allocated for aAction[] */
- struct {
- int lookahead; /* Value of the lookahead token */
- int action; /* Action to take on the given lookahead */
- } *aAction, /* The yy_action[] table under construction */
- *aLookahead; /* A single new transaction set */
- int mnLookahead; /* Minimum aLookahead[].lookahead */
- int mnAction; /* Action associated with mnLookahead */
- int mxLookahead; /* Maximum aLookahead[].lookahead */
- int nLookahead; /* Used slots in aLookahead[] */
- int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
-};
-
-/* Return the number of entries in the yy_action table */
-#define acttab_size(X) ((X)->nAction)
-
-/* The value for the N-th entry in yy_action */
-#define acttab_yyaction(X,N) ((X)->aAction[N].action)
-
-/* The value for the N-th entry in yy_lookahead */
-#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
-
-/* Free all memory associated with the given acttab */
-void acttab_free(acttab *p){
- free( p->aAction );
- free( p->aLookahead );
- free( p );
-}
-
-/* Allocate a new acttab structure */
-acttab *acttab_alloc(void){
- acttab *p = malloc( sizeof(*p) );
- if( p==0 ){
- fprintf(stderr,"Unable to allocate memory for a new acttab.");
- exit(1);
- }
- memset(p, 0, sizeof(*p));
- return p;
-}
-
-/* Add a new action to the current transaction set
-*/
-void acttab_action(acttab *p, int lookahead, int action){
- if( p->nLookahead>=p->nLookaheadAlloc ){
- p->nLookaheadAlloc += 25;
- p->aLookahead = realloc( p->aLookahead,
- sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
- if( p->aLookahead==0 ){
- fprintf(stderr,"malloc failed\n");
- exit(1);
- }
- }
- if( p->nLookahead==0 ){
- p->mxLookahead = lookahead;
- p->mnLookahead = lookahead;
- p->mnAction = action;
- }else{
- if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
- if( p->mnLookahead>lookahead ){
- p->mnLookahead = lookahead;
- p->mnAction = action;
- }
- }
- p->aLookahead[p->nLookahead].lookahead = lookahead;
- p->aLookahead[p->nLookahead].action = action;
- p->nLookahead++;
-}
-
-/*
-** Add the transaction set built up with prior calls to acttab_action()
-** into the current action table. Then reset the transaction set back
-** to an empty set in preparation for a new round of acttab_action() calls.
-**
-** Return the offset into the action table of the new transaction.
-*/
-int acttab_insert(acttab *p){
- int i, j, k, n;
- assert( p->nLookahead>0 );
-
- /* Make sure we have enough space to hold the expanded action table
- ** in the worst case. The worst case occurs if the transaction set
- ** must be appended to the current action table
- */
- n = p->mxLookahead + 1;
- if( p->nAction + n >= p->nActionAlloc ){
- int oldAlloc = p->nActionAlloc;
- p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
- p->aAction = realloc( p->aAction,
- sizeof(p->aAction[0])*p->nActionAlloc);
- if( p->aAction==0 ){
- fprintf(stderr,"malloc failed\n");
- exit(1);
- }
- for(i=oldAlloc; i<p->nActionAlloc; i++){
- p->aAction[i].lookahead = -1;
- p->aAction[i].action = -1;
- }
- }
-
- /* Scan the existing action table looking for an offset where we can
- ** insert the current transaction set. Fall out of the loop when that
- ** offset is found. In the worst case, we fall out of the loop when
- ** i reaches p->nAction, which means we append the new transaction set.
- **
- ** i is the index in p->aAction[] where p->mnLookahead is inserted.
- */
- for(i=0; i<p->nAction+p->mnLookahead; i++){
- if( p->aAction[i].lookahead<0 ){
- for(j=0; j<p->nLookahead; j++){
- k = p->aLookahead[j].lookahead - p->mnLookahead + i;
- if( k<0 ) break;
- if( p->aAction[k].lookahead>=0 ) break;
- }
- if( j<p->nLookahead ) continue;
- for(j=0; j<p->nAction; j++){
- if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
- }
- if( j==p->nAction ){
- break; /* Fits in empty slots */
- }
- }else if( p->aAction[i].lookahead==p->mnLookahead ){
- if( p->aAction[i].action!=p->mnAction ) continue;
- for(j=0; j<p->nLookahead; j++){
- k = p->aLookahead[j].lookahead - p->mnLookahead + i;
- if( k<0 || k>=p->nAction ) break;
- if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
- if( p->aLookahead[j].action!=p->aAction[k].action ) break;
- }
- if( j<p->nLookahead ) continue;
- n = 0;
- for(j=0; j<p->nAction; j++){
- if( p->aAction[j].lookahead<0 ) continue;
- if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
- }
- if( n==p->nLookahead ){
- break; /* Same as a prior transaction set */
- }
- }
- }
- /* Insert transaction set at index i. */
- for(j=0; j<p->nLookahead; j++){
- k = p->aLookahead[j].lookahead - p->mnLookahead + i;
- p->aAction[k] = p->aLookahead[j];
- if( k>=p->nAction ) p->nAction = k+1;
- }
- p->nLookahead = 0;
-
- /* Return the offset that is added to the lookahead in order to get the
- ** index into yy_action of the action */
- return i - p->mnLookahead;
-}
-
-/********************** From the file "assert.c" ****************************/
-/*
-** A more efficient way of handling assertions.
-*/
-void myassert(file,line)
-char *file;
-int line;
-{
- fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
- exit(1);
-}
-/********************** From the file "build.c" *****************************/
-/*
-** Routines to construction the finite state machine for the LEMON
-** parser generator.
-*/
-
-/* Find a precedence symbol of every rule in the grammar.
-**
-** Those rules which have a precedence symbol coded in the input
-** grammar using the "[symbol]" construct will already have the
-** rp->precsym field filled. Other rules take as their precedence
-** symbol the first RHS symbol with a defined precedence. If there
-** are not RHS symbols with a defined precedence, the precedence
-** symbol field is left blank.
-*/
-void FindRulePrecedences(xp)
-struct lemon *xp;
-{
- struct rule *rp;
- for(rp=xp->rule; rp; rp=rp->next){
- if( rp->precsym==0 ){
- int i, j;
- for(i=0; i<rp->nrhs && rp->precsym==0; i++){
- struct symbol *sp = rp->rhs[i];
- if( sp->type==MULTITERMINAL ){
- for(j=0; j<sp->nsubsym; j++){
- if( sp->subsym[j]->prec>=0 ){
- rp->precsym = sp->subsym[j];
- break;
- }
- }
- }else if( sp->prec>=0 ){
- rp->precsym = rp->rhs[i];
- }
- }
- }
- }
- return;
-}
-
-/* Find all nonterminals which will generate the empty string.
-** Then go back and compute the first sets of every nonterminal.
-** The first set is the set of all terminal symbols which can begin
-** a string generated by that nonterminal.
-*/
-void FindFirstSets(lemp)
-struct lemon *lemp;
-{
- int i, j;
- struct rule *rp;
- int progress;
-
- for(i=0; i<lemp->nsymbol; i++){
- lemp->symbols[i]->lambda = B_FALSE;
- }
- for(i=lemp->nterminal; i<lemp->nsymbol; i++){
- lemp->symbols[i]->firstset = SetNew();
- }
-
- /* First compute all lambdas */
- do{
- progress = 0;
- for(rp=lemp->rule; rp; rp=rp->next){
- if( rp->lhs->lambda ) continue;
- for(i=0; i<rp->nrhs; i++){
- struct symbol *sp = rp->rhs[i];
- if( sp->type!=TERMINAL || sp->lambda==B_FALSE ) break;
- }
- if( i==rp->nrhs ){
- rp->lhs->lambda = B_TRUE;
- progress = 1;
- }
- }
- }while( progress );
-
- /* Now compute all first sets */
- do{
- struct symbol *s1, *s2;
- progress = 0;
- for(rp=lemp->rule; rp; rp=rp->next){
- s1 = rp->lhs;
- for(i=0; i<rp->nrhs; i++){
- s2 = rp->rhs[i];
- if( s2->type==TERMINAL ){
- progress += SetAdd(s1->firstset,s2->index);
- break;
- }else if( s2->type==MULTITERMINAL ){
- for(j=0; j<s2->nsubsym; j++){
- progress += SetAdd(s1->firstset,s2->subsym[j]->index);
- }
- break;
- }else if( s1==s2 ){
- if( s1->lambda==B_FALSE ) break;
- }else{
- progress += SetUnion(s1->firstset,s2->firstset);
- if( s2->lambda==B_FALSE ) break;
- }
- }
- }
- }while( progress );
- return;
-}
-
-/* Compute all LR(0) states for the grammar. Links
-** are added to between some states so that the LR(1) follow sets
-** can be computed later.
-*/
-PRIVATE struct state *getstate(/* struct lemon * */); /* forward reference */
-void FindStates(lemp)
-struct lemon *lemp;
-{
- struct symbol *sp;
- struct rule *rp;
-
- Configlist_init();
-
- /* Find the start symbol */
- if( lemp->start ){
- sp = Symbol_find(lemp->start);
- if( sp==0 ){
- ErrorMsg(lemp->filename,0,
-"The specified start symbol \"%s\" is not \
-in a nonterminal of the grammar. \"%s\" will be used as the start \
-symbol instead.",lemp->start,lemp->rule->lhs->name);
- lemp->errorcnt++;
- sp = lemp->rule->lhs;
- }
- }else{
- sp = lemp->rule->lhs;
- }
-
- /* Make sure the start symbol doesn't occur on the right-hand side of
- ** any rule. Report an error if it does. (YACC would generate a new
- ** start symbol in this case.) */
- for(rp=lemp->rule; rp; rp=rp->next){
- int i;
- for(i=0; i<rp->nrhs; i++){
- if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
- ErrorMsg(lemp->filename,0,
-"The start symbol \"%s\" occurs on the \
-right-hand side of a rule. This will result in a parser which \
-does not work properly.",sp->name);
- lemp->errorcnt++;
- }
- }
- }
-
- /* The basis configuration set for the first state
- ** is all rules which have the start symbol as their
- ** left-hand side */
- for(rp=sp->rule; rp; rp=rp->nextlhs){
- struct config *newcfp;
- newcfp = Configlist_addbasis(rp,0);
- SetAdd(newcfp->fws,0);
- }
-
- /* Compute the first state. All other states will be
- ** computed automatically during the computation of the first one.
- ** The returned pointer to the first state is not used. */
- (void)getstate(lemp);
- return;
-}
-
-/* Return a pointer to a state which is described by the configuration
-** list which has been built from calls to Configlist_add.
-*/
-PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
-PRIVATE struct state *getstate(lemp)
-struct lemon *lemp;
-{
- struct config *cfp, *bp;
- struct state *stp;
-
- /* Extract the sorted basis of the new state. The basis was constructed
- ** by prior calls to "Configlist_addbasis()". */
- Configlist_sortbasis();
- bp = Configlist_basis();
-
- /* Get a state with the same basis */
- stp = State_find(bp);
- if( stp ){
- /* A state with the same basis already exists! Copy all the follow-set
- ** propagation links from the state under construction into the
- ** preexisting state, then return a pointer to the preexisting state */
- struct config *x, *y;
- for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
- Plink_copy(&y->bplp,x->bplp);
- Plink_delete(x->fplp);
- x->fplp = x->bplp = 0;
- }
- cfp = Configlist_return();
- Configlist_eat(cfp);
- }else{
- /* This really is a new state. Construct all the details */
- Configlist_closure(lemp); /* Compute the configuration closure */
- Configlist_sort(); /* Sort the configuration closure */
- cfp = Configlist_return(); /* Get a pointer to the config list */
- stp = State_new(); /* A new state structure */
- MemoryCheck(stp);
- stp->bp = bp; /* Remember the configuration basis */
- stp->cfp = cfp; /* Remember the configuration closure */
- stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
- stp->ap = 0; /* No actions, yet. */
- State_insert(stp,stp->bp); /* Add to the state table */
- buildshifts(lemp,stp); /* Recursively compute successor states */
- }
- return stp;
-}
-
-/*
-** Return true if two symbols are the same.
-*/
-int same_symbol(a,b)
-struct symbol *a;
-struct symbol *b;
-{
- int i;
- if( a==b ) return 1;
- if( a->type!=MULTITERMINAL ) return 0;
- if( b->type!=MULTITERMINAL ) return 0;
- if( a->nsubsym!=b->nsubsym ) return 0;
- for(i=0; i<a->nsubsym; i++){
- if( a->subsym[i]!=b->subsym[i] ) return 0;
- }
- return 1;
-}
-
-/* Construct all successor states to the given state. A "successor"
-** state is any state which can be reached by a shift action.
-*/
-PRIVATE void buildshifts(lemp,stp)
-struct lemon *lemp;
-struct state *stp; /* The state from which successors are computed */
-{
- struct config *cfp; /* For looping thru the config closure of "stp" */
- struct config *bcfp; /* For the inner loop on config closure of "stp" */
- struct config *new; /* */
- struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
- struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
- struct state *newstp; /* A pointer to a successor state */
-
- /* Each configuration becomes complete after it contibutes to a successor
- ** state. Initially, all configurations are incomplete */
- for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
-
- /* Loop through all configurations of the state "stp" */
- for(cfp=stp->cfp; cfp; cfp=cfp->next){
- if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
- if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
- Configlist_reset(); /* Reset the new config set */
- sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
-
- /* For every configuration in the state "stp" which has the symbol "sp"
- ** following its dot, add the same configuration to the basis set under
- ** construction but with the dot shifted one symbol to the right. */
- for(bcfp=cfp; bcfp; bcfp=bcfp->next){
- if( bcfp->status==COMPLETE ) continue; /* Already used */
- if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
- bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
- if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
- bcfp->status = COMPLETE; /* Mark this config as used */
- new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
- Plink_add(&new->bplp,bcfp);
- }
-
- /* Get a pointer to the state described by the basis configuration set
- ** constructed in the preceding loop */
- newstp = getstate(lemp);
-
- /* The state "newstp" is reached from the state "stp" by a shift action
- ** on the symbol "sp" */
- if( sp->type==MULTITERMINAL ){
- int i;
- for(i=0; i<sp->nsubsym; i++){
- Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
- }
- }else{
- Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
- }
- }
-}
-
-/*
-** Construct the propagation links
-*/
-void FindLinks(lemp)
-struct lemon *lemp;
-{
- int i;
- struct config *cfp, *other;
- struct state *stp;
- struct plink *plp;
-
- /* Housekeeping detail:
- ** Add to every propagate link a pointer back to the state to
- ** which the link is attached. */
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- for(cfp=stp->cfp; cfp; cfp=cfp->next){
- cfp->stp = stp;
- }
- }
-
- /* Convert all backlinks into forward links. Only the forward
- ** links are used in the follow-set computation. */
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- for(cfp=stp->cfp; cfp; cfp=cfp->next){
- for(plp=cfp->bplp; plp; plp=plp->next){
- other = plp->cfp;
- Plink_add(&other->fplp,cfp);
- }
- }
- }
-}
-
-/* Compute all followsets.
-**
-** A followset is the set of all symbols which can come immediately
-** after a configuration.
-*/
-void FindFollowSets(lemp)
-struct lemon *lemp;
-{
- int i;
- struct config *cfp;
- struct plink *plp;
- int progress;
- int change;
-
- for(i=0; i<lemp->nstate; i++){
- for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
- cfp->status = INCOMPLETE;
- }
- }
-
- do{
- progress = 0;
- for(i=0; i<lemp->nstate; i++){
- for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
- if( cfp->status==COMPLETE ) continue;
- for(plp=cfp->fplp; plp; plp=plp->next){
- change = SetUnion(plp->cfp->fws,cfp->fws);
- if( change ){
- plp->cfp->status = INCOMPLETE;
- progress = 1;
- }
- }
- cfp->status = COMPLETE;
- }
- }
- }while( progress );
-}
-
-static int resolve_conflict();
-
-/* Compute the reduce actions, and resolve conflicts.
-*/
-void FindActions(lemp)
-struct lemon *lemp;
-{
- int i,j;
- struct config *cfp;
- struct state *stp;
- struct symbol *sp;
- struct rule *rp;
-
- /* Add all of the reduce actions
- ** A reduce action is added for each element of the followset of
- ** a configuration which has its dot at the extreme right.
- */
- for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
- stp = lemp->sorted[i];
- for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
- if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
- for(j=0; j<lemp->nterminal; j++){
- if( SetFind(cfp->fws,j) ){
- /* Add a reduce action to the state "stp" which will reduce by the
- ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
- Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
- }
- }
- }
- }
- }
-
- /* Add the accepting token */
- if( lemp->start ){
- sp = Symbol_find(lemp->start);
- if( sp==0 ) sp = lemp->rule->lhs;
- }else{
- sp = lemp->rule->lhs;
- }
- /* Add to the first state (which is always the starting state of the
- ** finite state machine) an action to ACCEPT if the lookahead is the
- ** start nonterminal. */
- Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
-
- /* Resolve conflicts */
- for(i=0; i<lemp->nstate; i++){
- struct action *ap, *nap;
- struct state *stp;
- stp = lemp->sorted[i];
- assert( stp->ap );
- stp->ap = Action_sort(stp->ap);
- for(ap=stp->ap; ap && ap->next; ap=ap->next){
- for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
- /* The two actions "ap" and "nap" have the same lookahead.
- ** Figure out which one should be used */
- lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
- }
- }
- }
-
- /* Report an error for each rule that can never be reduced. */
- for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = B_FALSE;
- for(i=0; i<lemp->nstate; i++){
- struct action *ap;
- for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
- if( ap->type==REDUCE ) ap->x.rp->canReduce = B_TRUE;
- }
- }
- for(rp=lemp->rule; rp; rp=rp->next){
- if( rp->canReduce ) continue;
- ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
- lemp->errorcnt++;
- }
-}
-
-/* Resolve a conflict between the two given actions. If the
-** conflict can't be resolve, return non-zero.
-**
-** NO LONGER TRUE:
-** To resolve a conflict, first look to see if either action
-** is on an error rule. In that case, take the action which
-** is not associated with the error rule. If neither or both
-** actions are associated with an error rule, then try to
-** use precedence to resolve the conflict.
-**
-** If either action is a SHIFT, then it must be apx. This
-** function won't work if apx->type==REDUCE and apy->type==SHIFT.
-*/
-static int resolve_conflict(apx,apy,errsym)
-struct action *apx;
-struct action *apy;
-struct symbol *errsym; /* The error symbol (if defined. NULL otherwise) */
-{
- struct symbol *spx, *spy;
- int errcnt = 0;
- assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
- if( apx->type==SHIFT && apy->type==REDUCE ){
- spx = apx->sp;
- spy = apy->x.rp->precsym;
- if( spy==0 || spx->prec<0 || spy->prec<0 ){
- /* Not enough precedence information. */
- apy->type = CONFLICT;
- errcnt++;
- }else if( spx->prec>spy->prec ){ /* Lower precedence wins */
- apy->type = RD_RESOLVED;
- }else if( spx->prec<spy->prec ){
- apx->type = SH_RESOLVED;
- }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
- apy->type = RD_RESOLVED; /* associativity */
- }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
- apx->type = SH_RESOLVED;
- }else{
- assert( spx->prec==spy->prec && spx->assoc==NONE );
- apy->type = CONFLICT;
- errcnt++;
- }
- }else if( apx->type==REDUCE && apy->type==REDUCE ){
- spx = apx->x.rp->precsym;
- spy = apy->x.rp->precsym;
- if( spx==0 || spy==0 || spx->prec<0 ||
- spy->prec<0 || spx->prec==spy->prec ){
- apy->type = CONFLICT;
- errcnt++;
- }else if( spx->prec>spy->prec ){
- apy->type = RD_RESOLVED;
- }else if( spx->prec<spy->prec ){
- apx->type = RD_RESOLVED;
- }
- }else{
- assert(
- apx->type==SH_RESOLVED ||
- apx->type==RD_RESOLVED ||
- apx->type==CONFLICT ||
- apy->type==SH_RESOLVED ||
- apy->type==RD_RESOLVED ||
- apy->type==CONFLICT
- );
- /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
- ** REDUCEs on the list. If we reach this point it must be because
- ** the parser conflict had already been resolved. */
- }
- return errcnt;
-}
-/********************* From the file "configlist.c" *************************/
-/*
-** Routines to processing a configuration list and building a state
-** in the LEMON parser generator.
-*/
-
-static struct config *freelist = 0; /* List of free configurations */
-static struct config *current = 0; /* Top of list of configurations */
-static struct config **currentend = 0; /* Last on list of configs */
-static struct config *basis = 0; /* Top of list of basis configs */
-static struct config **basisend = 0; /* End of list of basis configs */
-
-/* Return a pointer to a new configuration */
-PRIVATE struct config *newconfig(){
- struct config *new;
- if( freelist==0 ){
- int i;
- int amt = 3;
- freelist = (struct config *)malloc( sizeof(struct config)*amt );
- if( freelist==0 ){
- fprintf(stderr,"Unable to allocate memory for a new configuration.");
- exit(1);
- }
- for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
- freelist[amt-1].next = 0;
- }
- new = freelist;
- freelist = freelist->next;
- return new;
-}
-
-/* The configuration "old" is no longer used */
-PRIVATE void deleteconfig(old)
-struct config *old;
-{
- old->next = freelist;
- freelist = old;
-}
-
-/* Initialized the configuration list builder */
-void Configlist_init(){
- current = 0;
- currentend = ¤t;
- basis = 0;
- basisend = &basis;
- Configtable_init();
- return;
-}
-
-/* Initialized the configuration list builder */
-void Configlist_reset(){
- current = 0;
- currentend = ¤t;
- basis = 0;
- basisend = &basis;
- Configtable_clear(0);
- return;
-}
-
-/* Add another configuration to the configuration list */
-struct config *Configlist_add(rp,dot)
-struct rule *rp; /* The rule */
-int dot; /* Index into the RHS of the rule where the dot goes */
-{
- struct config *cfp, model;
-
- assert( currentend!=0 );
- model.rp = rp;
- model.dot = dot;
- cfp = Configtable_find(&model);
- if( cfp==0 ){
- cfp = newconfig();
- cfp->rp = rp;
- cfp->dot = dot;
- cfp->fws = SetNew();
- cfp->stp = 0;
- cfp->fplp = cfp->bplp = 0;
- cfp->next = 0;
- cfp->bp = 0;
- *currentend = cfp;
- currentend = &cfp->next;
- Configtable_insert(cfp);
- }
- return cfp;
-}
-
-/* Add a basis configuration to the configuration list */
-struct config *Configlist_addbasis(rp,dot)
-struct rule *rp;
-int dot;
-{
- struct config *cfp, model;
-
- assert( basisend!=0 );
- assert( currentend!=0 );
- model.rp = rp;
- model.dot = dot;
- cfp = Configtable_find(&model);
- if( cfp==0 ){
- cfp = newconfig();
- cfp->rp = rp;
- cfp->dot = dot;
- cfp->fws = SetNew();
- cfp->stp = 0;
- cfp->fplp = cfp->bplp = 0;
- cfp->next = 0;
- cfp->bp = 0;
- *currentend = cfp;
- currentend = &cfp->next;
- *basisend = cfp;
- basisend = &cfp->bp;
- Configtable_insert(cfp);
- }
- return cfp;
-}
-
-/* Compute the closure of the configuration list */
-void Configlist_closure(lemp)
-struct lemon *lemp;
-{
- struct config *cfp, *newcfp;
- struct rule *rp, *newrp;
- struct symbol *sp, *xsp;
- int i, dot;
-
- assert( currentend!=0 );
- for(cfp=current; cfp; cfp=cfp->next){
- rp = cfp->rp;
- dot = cfp->dot;
- if( dot>=rp->nrhs ) continue;
- sp = rp->rhs[dot];
- if( sp->type==NONTERMINAL ){
- if( sp->rule==0 && sp!=lemp->errsym ){
- ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
- sp->name);
- lemp->errorcnt++;
- }
- for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
- newcfp = Configlist_add(newrp,0);
- for(i=dot+1; i<rp->nrhs; i++){
- xsp = rp->rhs[i];
- if( xsp->type==TERMINAL ){
- SetAdd(newcfp->fws,xsp->index);
- break;
- }else if( xsp->type==MULTITERMINAL ){
- int k;
- for(k=0; k<xsp->nsubsym; k++){
- SetAdd(newcfp->fws, xsp->subsym[k]->index);
- }
- break;
- }else{
- SetUnion(newcfp->fws,xsp->firstset);
- if( xsp->lambda==B_FALSE ) break;
- }
- }
- if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
- }
- }
- }
- return;
-}
-
-/* Sort the configuration list */
-void Configlist_sort(){
- current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
- currentend = 0;
- return;
-}
-
-/* Sort the basis configuration list */
-void Configlist_sortbasis(){
- basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
- basisend = 0;
- return;
-}
-
-/* Return a pointer to the head of the configuration list and
-** reset the list */
-struct config *Configlist_return(){
- struct config *old;
- old = current;
- current = 0;
- currentend = 0;
- return old;
-}
-
-/* Return a pointer to the head of the configuration list and
-** reset the list */
-struct config *Configlist_basis(){
- struct config *old;
- old = basis;
- basis = 0;
- basisend = 0;
- return old;
-}
-
-/* Free all elements of the given configuration list */
-void Configlist_eat(cfp)
-struct config *cfp;
-{
- struct config *nextcfp;
- for(; cfp; cfp=nextcfp){
- nextcfp = cfp->next;
- assert( cfp->fplp==0 );
- assert( cfp->bplp==0 );
- if( cfp->fws ) SetFree(cfp->fws);
- deleteconfig(cfp);
- }
- return;
-}
-/***************** From the file "error.c" *********************************/
-/*
-** Code for printing error message.
-*/
-
-/* Find a good place to break "msg" so that its length is at least "min"
-** but no more than "max". Make the point as close to max as possible.
-*/
-static int findbreak(msg,min,max)
-char *msg;
-int min;
-int max;
-{
- int i,spot;
- char c;
- for(i=spot=min; i<=max; i++){
- c = msg[i];
- if( c=='\t' ) msg[i] = ' ';
- if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
- if( c==0 ){ spot = i; break; }
- if( c=='-' && i<max-1 ) spot = i+1;
- if( c==' ' ) spot = i;
- }
- return spot;
-}
-
-/*
-** The error message is split across multiple lines if necessary. The
-** splits occur at a space, if there is a space available near the end
-** of the line.
-*/
-#define ERRMSGSIZE 10000 /* Hope this is big enough. No way to error check */
-#define LINEWIDTH 79 /* Max width of any output line */
-#define PREFIXLIMIT 30 /* Max width of the prefix on each line */
-void ErrorMsg(const char *filename, int lineno, const char *format, ...){
- char errmsg[ERRMSGSIZE];
- char prefix[PREFIXLIMIT+10];
- int errmsgsize;
- int prefixsize;
- int availablewidth;
- va_list ap;
- int end, restart, base;
-
- va_start(ap, format);
- /* Prepare a prefix to be prepended to every output line */
- if( lineno>0 ){
- sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
- }else{
- sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
- }
- prefixsize = strlen(prefix);
- availablewidth = LINEWIDTH - prefixsize;
-
- /* Generate the error message */
- vsprintf(errmsg,format,ap);
- va_end(ap);
- errmsgsize = strlen(errmsg);
- /* Remove trailing '\n's from the error message. */
- while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
- errmsg[--errmsgsize] = 0;
- }
-
- /* Print the error message */
- base = 0;
- while( errmsg[base]!=0 ){
- end = restart = findbreak(&errmsg[base],0,availablewidth);
- restart += base;
- while( errmsg[restart]==' ' ) restart++;
- fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
- base = restart;
- }
-}
-/**************** From the file "main.c" ************************************/
-/*
-** Main program file for the LEMON parser generator.
-*/
-
-/* Report an out-of-memory condition and abort. This function
-** is used mostly by the "MemoryCheck" macro in struct.h
-*/
-void memory_error(){
- fprintf(stderr,"Out of memory. Aborting...\n");
- exit(1);
-}
-
-static int nDefine = 0; /* Number of -D options on the command line */
-static char **azDefine = 0; /* Name of the -D macros */
-
-/* This routine is called with the argument to each -D command-line option.
-** Add the macro defined to the azDefine array.
-*/
-static void handle_D_option(char *z){
- char **paz;
- nDefine++;
- azDefine = realloc(azDefine, sizeof(azDefine[0])*nDefine);
- if( azDefine==0 ){
- fprintf(stderr,"out of memory\n");
- exit(1);
- }
- paz = &azDefine[nDefine-1];
- *paz = malloc( strlen(z)+1 );
- if( *paz==0 ){
- fprintf(stderr,"out of memory\n");
- exit(1);
- }
- strcpy(*paz, z);
- for(z=*paz; *z && *z!='='; z++){}
- *z = 0;
-}
-
-
-/* The main program. Parse the command line and do it... */
-int main(argc,argv)
-int argc;
-char **argv;
-{
- static int version = 0;
- static int rpflag = 0;
- static int basisflag = 0;
- static int compress = 0;
- static int quiet = 0;
- static int statistics = 0;
- static int mhflag = 0;
- static struct s_options options[] = {
- {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
- {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
- {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
- {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
- {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
- {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
- {OPT_FLAG, "s", (char*)&statistics,
- "Print parser stats to standard output."},
- {OPT_FLAG, "x", (char*)&version, "Print the version number."},
- {OPT_FLAG,0,0,0}
- };
- int i;
- struct lemon lem;
-
- OptInit(argv,options,stderr);
- if( version ){
- printf("Lemon version 1.0\n");
- exit(0);
- }
- if( OptNArgs()!=1 ){
- fprintf(stderr,"Exactly one filename argument is required.\n");
- exit(1);
- }
- memset(&lem, 0, sizeof(lem));
- lem.errorcnt = 0;
-
- /* Initialize the machine */
- Strsafe_init();
- Symbol_init();
- State_init();
- lem.argv0 = argv[0];
- lem.filename = OptArg(0);
- lem.basisflag = basisflag;
- Symbol_new("$");
- lem.errsym = Symbol_new("error");
-
- /* Parse the input file */
- Parse(&lem);
- if( lem.errorcnt ) exit(lem.errorcnt);
- if( lem.nrule==0 ){
- fprintf(stderr,"Empty grammar.\n");
- exit(1);
- }
-
- /* Count and index the symbols of the grammar */
- lem.nsymbol = Symbol_count();
- Symbol_new("{default}");
- lem.symbols = Symbol_arrayof();
- for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
- qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
- (int(*)())Symbolcmpp);
- for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
- for(i=1; isupper(lem.symbols[i]->name[0]); i++);
- lem.nterminal = i;
-
- /* Generate a reprint of the grammar, if requested on the command line */
- if( rpflag ){
- Reprint(&lem);
- }else{
- /* Initialize the size for all follow and first sets */
- SetSize(lem.nterminal);
-
- /* Find the precedence for every production rule (that has one) */
- FindRulePrecedences(&lem);
-
- /* Compute the lambda-nonterminals and the first-sets for every
- ** nonterminal */
- FindFirstSets(&lem);
-
- /* Compute all LR(0) states. Also record follow-set propagation
- ** links so that the follow-set can be computed later */
- lem.nstate = 0;
- FindStates(&lem);
- lem.sorted = State_arrayof();
-
- /* Tie up loose ends on the propagation links */
- FindLinks(&lem);
-
- /* Compute the follow set of every reducible configuration */
- FindFollowSets(&lem);
-
- /* Compute the action tables */
- FindActions(&lem);
-
- /* Compress the action tables */
- if( compress==0 ) CompressTables(&lem);
-
- /* Reorder and renumber the states so that states with fewer choices
- ** occur at the end. */
- ResortStates(&lem);
-
- /* Generate a report of the parser generated. (the "y.output" file) */
- if( !quiet ) ReportOutput(&lem);
-
- /* Generate the source code for the parser */
- ReportTable(&lem, mhflag);
-
- /* Produce a header file for use by the scanner. (This step is
- ** omitted if the "-m" option is used because makeheaders will
- ** generate the file for us.) */
- if( !mhflag ) ReportHeader(&lem);
- }
- if( statistics ){
- printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
- lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
- printf(" %d states, %d parser table entries, %d conflicts\n",
- lem.nstate, lem.tablesize, lem.nconflict);
- }
- if( lem.nconflict ){
- fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
- }
- exit(lem.errorcnt + lem.nconflict);
- return (lem.errorcnt + lem.nconflict);
-}
-/******************** From the file "msort.c" *******************************/
-/*
-** A generic merge-sort program.
-**
-** USAGE:
-** Let "ptr" be a pointer to some structure which is at the head of
-** a null-terminated list. Then to sort the list call:
-**
-** ptr = msort(ptr,&(ptr->next),cmpfnc);
-**
-** In the above, "cmpfnc" is a pointer to a function which compares
-** two instances of the structure and returns an integer, as in
-** strcmp. The second argument is a pointer to the pointer to the
-** second element of the linked list. This address is used to compute
-** the offset to the "next" field within the structure. The offset to
-** the "next" field must be constant for all structures in the list.
-**
-** The function returns a new pointer which is the head of the list
-** after sorting.
-**
-** ALGORITHM:
-** Merge-sort.
-*/
-
-/*
-** Return a pointer to the next structure in the linked list.
-*/
-#define NEXT(A) (*(char**)(((unsigned long)A)+offset))
-
-/*
-** Inputs:
-** a: A sorted, null-terminated linked list. (May be null).
-** b: A sorted, null-terminated linked list. (May be null).
-** cmp: A pointer to the comparison function.
-** offset: Offset in the structure to the "next" field.
-**
-** Return Value:
-** A pointer to the head of a sorted list containing the elements
-** of both a and b.
-**
-** Side effects:
-** The "next" pointers for elements in the lists a and b are
-** changed.
-*/
-static char *merge(a,b,cmp,offset)
-char *a;
-char *b;
-int (*cmp)();
-int offset;
-{
- char *ptr, *head;
-
- if( a==0 ){
- head = b;
- }else if( b==0 ){
- head = a;
- }else{
- if( (*cmp)(a,b)<0 ){
- ptr = a;
- a = NEXT(a);
- }else{
- ptr = b;
- b = NEXT(b);
- }
- head = ptr;
- while( a && b ){
- if( (*cmp)(a,b)<0 ){
- NEXT(ptr) = a;
- ptr = a;
- a = NEXT(a);
- }else{
- NEXT(ptr) = b;
- ptr = b;
- b = NEXT(b);
- }
- }
- if( a ) NEXT(ptr) = a;
- else NEXT(ptr) = b;
- }
- return head;
-}
-
-/*
-** Inputs:
-** list: Pointer to a singly-linked list of structures.
-** next: Pointer to pointer to the second element of the list.
-** cmp: A comparison function.
-**
-** Return Value:
-** A pointer to the head of a sorted list containing the elements
-** orginally in list.
-**
-** Side effects:
-** The "next" pointers for elements in list are changed.
-*/
-#define LISTSIZE 30
-char *msort(list,next,cmp)
-char *list;
-char **next;
-int (*cmp)();
-{
- unsigned long offset;
- char *ep;
- char *set[LISTSIZE];
- int i;
- offset = (unsigned long)next - (unsigned long)list;
- for(i=0; i<LISTSIZE; i++) set[i] = 0;
- while( list ){
- ep = list;
- list = NEXT(list);
- NEXT(ep) = 0;
- for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
- ep = merge(ep,set[i],cmp,offset);
- set[i] = 0;
- }
- set[i] = ep;
- }
- ep = 0;
- for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
- return ep;
-}
-/************************ From the file "option.c" **************************/
-static char **argv;
-static struct s_options *op;
-static FILE *errstream;
-
-#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
-
-/*
-** Print the command line with a carrot pointing to the k-th character
-** of the n-th field.
-*/
-static void errline(n,k,err)
-int n;
-int k;
-FILE *err;
-{
- int spcnt, i;
- if( argv[0] ) fprintf(err,"%s",argv[0]);
- spcnt = strlen(argv[0]) + 1;
- for(i=1; i<n && argv[i]; i++){
- fprintf(err," %s",argv[i]);
- spcnt += strlen(argv[i])+1;
- }
- spcnt += k;
- for(; argv[i]; i++) fprintf(err," %s",argv[i]);
- if( spcnt<20 ){
- fprintf(err,"\n%*s^-- here\n",spcnt,"");
- }else{
- fprintf(err,"\n%*shere --^\n",spcnt-7,"");
- }
-}
-
-/*
-** Return the index of the N-th non-switch argument. Return -1
-** if N is out of range.
-*/
-static int argindex(n)
-int n;
-{
- int i;
- int dashdash = 0;
- if( argv!=0 && *argv!=0 ){
- for(i=1; argv[i]; i++){
- if( dashdash || !ISOPT(argv[i]) ){
- if( n==0 ) return i;
- n--;
- }
- if( strcmp(argv[i],"--")==0 ) dashdash = 1;
- }
- }
- return -1;
-}
-
-static char emsg[] = "Command line syntax error: ";
-
-/*
-** Process a flag command line argument.
-*/
-static int handleflags(i,err)
-int i;
-FILE *err;
-{
- int v;
- int errcnt = 0;
- int j;
- for(j=0; op[j].label; j++){
- if( strncmp(&argv[i][1],op[j].label,strlen(op[j].label))==0 ) break;
- }
- v = argv[i][0]=='-' ? 1 : 0;
- if( op[j].label==0 ){
- if( err ){
- fprintf(err,"%sundefined option.\n",emsg);
- errline(i,1,err);
- }
- errcnt++;
- }else if( op[j].type==OPT_FLAG ){
- *((int*)op[j].arg) = v;
- }else if( op[j].type==OPT_FFLAG ){
- (*(void(*)())(op[j].arg))(v);
- }else if( op[j].type==OPT_FSTR ){
- (*(void(*)())(op[j].arg))(&argv[i][2]);
- }else{
- if( err ){
- fprintf(err,"%smissing argument on switch.\n",emsg);
- errline(i,1,err);
- }
- errcnt++;
- }
- return errcnt;
-}
-
-/*
-** Process a command line switch which has an argument.
-*/
-static int handleswitch(i,err)
-int i;
-FILE *err;
-{
- int lv = 0;
- double dv = 0.0;
- char *sv = 0, *end;
- char *cp;
- int j;
- int errcnt = 0;
- cp = strchr(argv[i],'=');
- assert( cp!=0 );
- *cp = 0;
- for(j=0; op[j].label; j++){
- if( strcmp(argv[i],op[j].label)==0 ) break;
- }
- *cp = '=';
- if( op[j].label==0 ){
- if( err ){
- fprintf(err,"%sundefined option.\n",emsg);
- errline(i,0,err);
- }
- errcnt++;
- }else{
- cp++;
- switch( op[j].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- if( err ){
- fprintf(err,"%soption requires an argument.\n",emsg);
- errline(i,0,err);
- }
- errcnt++;
- break;
- case OPT_DBL:
- case OPT_FDBL:
- dv = strtod(cp,&end);
- if( *end ){
- if( err ){
- fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
- errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
- }
- errcnt++;
- }
- break;
- case OPT_INT:
- case OPT_FINT:
- lv = strtol(cp,&end,0);
- if( *end ){
- if( err ){
- fprintf(err,"%sillegal character in integer argument.\n",emsg);
- errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
- }
- errcnt++;
- }
- break;
- case OPT_STR:
- case OPT_FSTR:
- sv = cp;
- break;
- }
- switch( op[j].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- break;
- case OPT_DBL:
- *(double*)(op[j].arg) = dv;
- break;
- case OPT_FDBL:
- (*(void(*)())(op[j].arg))(dv);
- break;
- case OPT_INT:
- *(int*)(op[j].arg) = lv;
- break;
- case OPT_FINT:
- (*(void(*)())(op[j].arg))((int)lv);
- break;
- case OPT_STR:
- *(char**)(op[j].arg) = sv;
- break;
- case OPT_FSTR:
- (*(void(*)())(op[j].arg))(sv);
- break;
- }
- }
- return errcnt;
-}
-
-int OptInit(a,o,err)
-char **a;
-struct s_options *o;
-FILE *err;
-{
- int errcnt = 0;
- argv = a;
- op = o;
- errstream = err;
- if( argv && *argv && op ){
- int i;
- for(i=1; argv[i]; i++){
- if( argv[i][0]=='+' || argv[i][0]=='-' ){
- errcnt += handleflags(i,err);
- }else if( strchr(argv[i],'=') ){
- errcnt += handleswitch(i,err);
- }
- }
- }
- if( errcnt>0 ){
- fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
- OptPrint();
- exit(1);
- }
- return 0;
-}
-
-int OptNArgs(){
- int cnt = 0;
- int dashdash = 0;
- int i;
- if( argv!=0 && argv[0]!=0 ){
- for(i=1; argv[i]; i++){
- if( dashdash || !ISOPT(argv[i]) ) cnt++;
- if( strcmp(argv[i],"--")==0 ) dashdash = 1;
- }
- }
- return cnt;
-}
-
-char *OptArg(n)
-int n;
-{
- int i;
- i = argindex(n);
- return i>=0 ? argv[i] : 0;
-}
-
-void OptErr(n)
-int n;
-{
- int i;
- i = argindex(n);
- if( i>=0 ) errline(i,0,errstream);
-}
-
-void OptPrint(){
- int i;
- int max, len;
- max = 0;
- for(i=0; op[i].label; i++){
- len = strlen(op[i].label) + 1;
- switch( op[i].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- break;
- case OPT_INT:
- case OPT_FINT:
- len += 9; /* length of "<integer>" */
- break;
- case OPT_DBL:
- case OPT_FDBL:
- len += 6; /* length of "<real>" */
- break;
- case OPT_STR:
- case OPT_FSTR:
- len += 8; /* length of "<string>" */
- break;
- }
- if( len>max ) max = len;
- }
- for(i=0; op[i].label; i++){
- switch( op[i].type ){
- case OPT_FLAG:
- case OPT_FFLAG:
- fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
- break;
- case OPT_INT:
- case OPT_FINT:
- fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
- (int)(max-strlen(op[i].label)-9),"",op[i].message);
- break;
- case OPT_DBL:
- case OPT_FDBL:
- fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
- (int)(max-strlen(op[i].label)-6),"",op[i].message);
- break;
- case OPT_STR:
- case OPT_FSTR:
- fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
- (int)(max-strlen(op[i].label)-8),"",op[i].message);
- break;
- }
- }
-}
-/*********************** From the file "parse.c" ****************************/
-/*
-** Input file parser for the LEMON parser generator.
-*/
-
-/* The state of the parser */
-struct pstate {
- char *filename; /* Name of the input file */
- int tokenlineno; /* Linenumber at which current token starts */
- int errorcnt; /* Number of errors so far */
- char *tokenstart; /* Text of current token */
- struct lemon *gp; /* Global state vector */
- enum e_state {
- INITIALIZE,
- WAITING_FOR_DECL_OR_RULE,
- WAITING_FOR_DECL_KEYWORD,
- WAITING_FOR_DECL_ARG,
- WAITING_FOR_PRECEDENCE_SYMBOL,
- WAITING_FOR_ARROW,
- IN_RHS,
- LHS_ALIAS_1,
- LHS_ALIAS_2,
- LHS_ALIAS_3,
- RHS_ALIAS_1,
- RHS_ALIAS_2,
- PRECEDENCE_MARK_1,
- PRECEDENCE_MARK_2,
- RESYNC_AFTER_RULE_ERROR,
- RESYNC_AFTER_DECL_ERROR,
- WAITING_FOR_DESTRUCTOR_SYMBOL,
- WAITING_FOR_DATATYPE_SYMBOL,
- WAITING_FOR_FALLBACK_ID,
- WAITING_FOR_WILDCARD_ID
- } state; /* The state of the parser */
- struct symbol *fallback; /* The fallback token */
- struct symbol *lhs; /* Left-hand side of current rule */
- char *lhsalias; /* Alias for the LHS */
- int nrhs; /* Number of right-hand side symbols seen */
- struct symbol *rhs[MAXRHS]; /* RHS symbols */
- char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
- struct rule *prevrule; /* Previous rule parsed */
- char *declkeyword; /* Keyword of a declaration */
- char **declargslot; /* Where the declaration argument should be put */
- int *decllnslot; /* Where the declaration linenumber is put */
- enum e_assoc declassoc; /* Assign this association to decl arguments */
- int preccounter; /* Assign this precedence to decl arguments */
- struct rule *firstrule; /* Pointer to first rule in the grammar */
- struct rule *lastrule; /* Pointer to the most recently parsed rule */
-};
-
-/* Parse a single token */
-static void parseonetoken(psp)
-struct pstate *psp;
-{
- char *x;
- x = Strsafe(psp->tokenstart); /* Save the token permanently */
-#if 0
- printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
- x,psp->state);
-#endif
- switch( psp->state ){
- case INITIALIZE:
- psp->prevrule = 0;
- psp->preccounter = 0;
- psp->firstrule = psp->lastrule = 0;
- psp->gp->nrule = 0;
- /* Fall thru to next case */
- case WAITING_FOR_DECL_OR_RULE:
- if( x[0]=='%' ){
- psp->state = WAITING_FOR_DECL_KEYWORD;
- }else if( islower(x[0]) ){
- psp->lhs = Symbol_new(x);
- psp->nrhs = 0;
- psp->lhsalias = 0;
- psp->state = WAITING_FOR_ARROW;
- }else if( x[0]=='{' ){
- if( psp->prevrule==0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
-"There is not prior rule opon which to attach the code \
-fragment which begins on this line.");
- psp->errorcnt++;
- }else if( psp->prevrule->code!=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
-"Code fragment beginning on this line is not the first \
-to follow the previous rule.");
- psp->errorcnt++;
- }else{
- psp->prevrule->line = psp->tokenlineno;
- psp->prevrule->code = &x[1];
- }
- }else if( x[0]=='[' ){
- psp->state = PRECEDENCE_MARK_1;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Token \"%s\" should be either \"%%\" or a nonterminal name.",
- x);
- psp->errorcnt++;
- }
- break;
- case PRECEDENCE_MARK_1:
- if( !isupper(x[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "The precedence symbol must be a terminal.");
- psp->errorcnt++;
- }else if( psp->prevrule==0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "There is no prior rule to assign precedence \"[%s]\".",x);
- psp->errorcnt++;
- }else if( psp->prevrule->precsym!=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
-"Precedence mark on this line is not the first \
-to follow the previous rule.");
- psp->errorcnt++;
- }else{
- psp->prevrule->precsym = Symbol_new(x);
- }
- psp->state = PRECEDENCE_MARK_2;
- break;
- case PRECEDENCE_MARK_2:
- if( x[0]!=']' ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \"]\" on precedence mark.");
- psp->errorcnt++;
- }
- psp->state = WAITING_FOR_DECL_OR_RULE;
- break;
- case WAITING_FOR_ARROW:
- if( x[0]==':' && x[1]==':' && x[2]=='=' ){
- psp->state = IN_RHS;
- }else if( x[0]=='(' ){
- psp->state = LHS_ALIAS_1;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Expected to see a \":\" following the LHS symbol \"%s\".",
- psp->lhs->name);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case LHS_ALIAS_1:
- if( isalpha(x[0]) ){
- psp->lhsalias = x;
- psp->state = LHS_ALIAS_2;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "\"%s\" is not a valid alias for the LHS \"%s\"\n",
- x,psp->lhs->name);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case LHS_ALIAS_2:
- if( x[0]==')' ){
- psp->state = LHS_ALIAS_3;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case LHS_ALIAS_3:
- if( x[0]==':' && x[1]==':' && x[2]=='=' ){
- psp->state = IN_RHS;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \"->\" following: \"%s(%s)\".",
- psp->lhs->name,psp->lhsalias);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case IN_RHS:
- if( x[0]=='.' ){
- struct rule *rp;
- rp = (struct rule *)malloc( sizeof(struct rule) +
- sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
- if( rp==0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Can't allocate enough memory for this rule.");
- psp->errorcnt++;
- psp->prevrule = 0;
- }else{
- int i;
- rp->ruleline = psp->tokenlineno;
- rp->rhs = (struct symbol**)&rp[1];
- rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
- for(i=0; i<psp->nrhs; i++){
- rp->rhs[i] = psp->rhs[i];
- rp->rhsalias[i] = psp->alias[i];
- }
- rp->lhs = psp->lhs;
- rp->lhsalias = psp->lhsalias;
- rp->nrhs = psp->nrhs;
- rp->code = 0;
- rp->precsym = 0;
- rp->index = psp->gp->nrule++;
- rp->nextlhs = rp->lhs->rule;
- rp->lhs->rule = rp;
- rp->next = 0;
- if( psp->firstrule==0 ){
- psp->firstrule = psp->lastrule = rp;
- }else{
- psp->lastrule->next = rp;
- psp->lastrule = rp;
- }
- psp->prevrule = rp;
- }
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( isalpha(x[0]) ){
- if( psp->nrhs>=MAXRHS ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Too many symbols on RHS or rule beginning at \"%s\".",
- x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }else{
- psp->rhs[psp->nrhs] = Symbol_new(x);
- psp->alias[psp->nrhs] = 0;
- psp->nrhs++;
- }
- }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
- struct symbol *msp = psp->rhs[psp->nrhs-1];
- if( msp->type!=MULTITERMINAL ){
- struct symbol *origsp = msp;
- msp = malloc(sizeof(*msp));
- memset(msp, 0, sizeof(*msp));
- msp->type = MULTITERMINAL;
- msp->nsubsym = 1;
- msp->subsym = malloc(sizeof(struct symbol*));
- msp->subsym[0] = origsp;
- msp->name = origsp->name;
- psp->rhs[psp->nrhs-1] = msp;
- }
- msp->nsubsym++;
- msp->subsym = realloc(msp->subsym, sizeof(struct symbol*)*msp->nsubsym);
- msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
- if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Cannot form a compound containing a non-terminal");
- psp->errorcnt++;
- }
- }else if( x[0]=='(' && psp->nrhs>0 ){
- psp->state = RHS_ALIAS_1;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Illegal character on RHS of rule: \"%s\".",x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case RHS_ALIAS_1:
- if( isalpha(x[0]) ){
- psp->alias[psp->nrhs-1] = x;
- psp->state = RHS_ALIAS_2;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
- x,psp->rhs[psp->nrhs-1]->name);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case RHS_ALIAS_2:
- if( x[0]==')' ){
- psp->state = IN_RHS;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_RULE_ERROR;
- }
- break;
- case WAITING_FOR_DECL_KEYWORD:
- if( isalpha(x[0]) ){
- psp->declkeyword = x;
- psp->declargslot = 0;
- psp->decllnslot = 0;
- psp->state = WAITING_FOR_DECL_ARG;
- if( strcmp(x,"name")==0 ){
- psp->declargslot = &(psp->gp->name);
- }else if( strcmp(x,"include")==0 ){
- psp->declargslot = &(psp->gp->include);
- psp->decllnslot = &psp->gp->includeln;
- }else if( strcmp(x,"code")==0 ){
- psp->declargslot = &(psp->gp->extracode);
- psp->decllnslot = &psp->gp->extracodeln;
- }else if( strcmp(x,"token_destructor")==0 ){
- psp->declargslot = &psp->gp->tokendest;
- psp->decllnslot = &psp->gp->tokendestln;
- }else if( strcmp(x,"default_destructor")==0 ){
- psp->declargslot = &psp->gp->vardest;
- psp->decllnslot = &psp->gp->vardestln;
- }else if( strcmp(x,"token_prefix")==0 ){
- psp->declargslot = &psp->gp->tokenprefix;
- }else if( strcmp(x,"syntax_error")==0 ){
- psp->declargslot = &(psp->gp->error);
- psp->decllnslot = &psp->gp->errorln;
- }else if( strcmp(x,"parse_accept")==0 ){
- psp->declargslot = &(psp->gp->accept);
- psp->decllnslot = &psp->gp->acceptln;
- }else if( strcmp(x,"parse_failure")==0 ){
- psp->declargslot = &(psp->gp->failure);
- psp->decllnslot = &psp->gp->failureln;
- }else if( strcmp(x,"stack_overflow")==0 ){
- psp->declargslot = &(psp->gp->overflow);
- psp->decllnslot = &psp->gp->overflowln;
- }else if( strcmp(x,"extra_argument")==0 ){
- psp->declargslot = &(psp->gp->arg);
- }else if( strcmp(x,"token_type")==0 ){
- psp->declargslot = &(psp->gp->tokentype);
- }else if( strcmp(x,"default_type")==0 ){
- psp->declargslot = &(psp->gp->vartype);
- }else if( strcmp(x,"stack_size")==0 ){
- psp->declargslot = &(psp->gp->stacksize);
- }else if( strcmp(x,"start_symbol")==0 ){
- psp->declargslot = &(psp->gp->start);
- }else if( strcmp(x,"left")==0 ){
- psp->preccounter++;
- psp->declassoc = LEFT;
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
- }else if( strcmp(x,"right")==0 ){
- psp->preccounter++;
- psp->declassoc = RIGHT;
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
- }else if( strcmp(x,"nonassoc")==0 ){
- psp->preccounter++;
- psp->declassoc = NONE;
- psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
- }else if( strcmp(x,"destructor")==0 ){
- psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
- }else if( strcmp(x,"type")==0 ){
- psp->state = WAITING_FOR_DATATYPE_SYMBOL;
- }else if( strcmp(x,"fallback")==0 ){
- psp->fallback = 0;
- psp->state = WAITING_FOR_FALLBACK_ID;
- }else if( strcmp(x,"wildcard")==0 ){
- psp->state = WAITING_FOR_WILDCARD_ID;
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Unknown declaration keyword: \"%%%s\".",x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Illegal declaration keyword: \"%s\".",x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }
- break;
- case WAITING_FOR_DESTRUCTOR_SYMBOL:
- if( !isalpha(x[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Symbol name missing after %destructor keyword");
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }else{
- struct symbol *sp = Symbol_new(x);
- psp->declargslot = &sp->destructor;
- psp->decllnslot = &sp->destructorln;
- psp->state = WAITING_FOR_DECL_ARG;
- }
- break;
- case WAITING_FOR_DATATYPE_SYMBOL:
- if( !isalpha(x[0]) ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Symbol name missing after %destructor keyword");
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }else{
- struct symbol *sp = Symbol_new(x);
- psp->declargslot = &sp->datatype;
- psp->decllnslot = 0;
- psp->state = WAITING_FOR_DECL_ARG;
- }
- break;
- case WAITING_FOR_PRECEDENCE_SYMBOL:
- if( x[0]=='.' ){
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( isupper(x[0]) ){
- struct symbol *sp;
- sp = Symbol_new(x);
- if( sp->prec>=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Symbol \"%s\" has already be given a precedence.",x);
- psp->errorcnt++;
- }else{
- sp->prec = psp->preccounter;
- sp->assoc = psp->declassoc;
- }
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Can't assign a precedence to \"%s\".",x);
- psp->errorcnt++;
- }
- break;
- case WAITING_FOR_DECL_ARG:
- if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
- if( *(psp->declargslot)!=0 ){
- ErrorMsg(psp->filename,psp->tokenlineno,
- "The argument \"%s\" to declaration \"%%%s\" is not the first.",
- x[0]=='\"' ? &x[1] : x,psp->declkeyword);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }else{
- *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
- if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }
- }else{
- ErrorMsg(psp->filename,psp->tokenlineno,
- "Illegal argument to %%%s: %s",psp->declkeyword,x);
- psp->errorcnt++;
- psp->state = RESYNC_AFTER_DECL_ERROR;
- }
- break;
- case WAITING_FOR_FALLBACK_ID:
- if( x[0]=='.' ){
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( !isupper(x[0]) ){
- ErrorMsg(psp->filename, psp->tokenlineno,
- "%%fallback argument \"%s\" should be a token", x);
- psp->errorcnt++;
- }else{
- struct symbol *sp = Symbol_new(x);
- if( psp->fallback==0 ){
- psp->fallback = sp;
- }else if( sp->fallback ){
- ErrorMsg(psp->filename, psp->tokenlineno,
- "More than one fallback assigned to token %s", x);
- psp->errorcnt++;
- }else{
- sp->fallback = psp->fallback;
- psp->gp->has_fallback = 1;
- }
- }
- break;
- case WAITING_FOR_WILDCARD_ID:
- if( x[0]=='.' ){
- psp->state = WAITING_FOR_DECL_OR_RULE;
- }else if( !isupper(x[0]) ){
- ErrorMsg(psp->filename, psp->tokenlineno,
- "%%wildcard argument \"%s\" should be a token", x);
- psp->errorcnt++;
- }else{
- struct symbol *sp = Symbol_new(x);
- if( psp->gp->wildcard==0 ){
- psp->gp->wildcard = sp;
- }else{
- ErrorMsg(psp->filename, psp->tokenlineno,
- "Extra wildcard to token: %s", x);
- psp->errorcnt++;
- }
- }
- break;
- case RESYNC_AFTER_RULE_ERROR:
-/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
-** break; */
- case RESYNC_AFTER_DECL_ERROR:
- if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
- if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
- break;
- }
-}
-
-/* Run the proprocessor over the input file text. The global variables
-** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
-** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
-** comments them out. Text in between is also commented out as appropriate.
-*/
-static void preprocess_input(char *z){
- int i, j, k, n;
- int exclude = 0;
- int start;
- int lineno = 1;
- int start_lineno;
- for(i=0; z[i]; i++){
- if( z[i]=='\n' ) lineno++;
- if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
- if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
- if( exclude ){
- exclude--;
- if( exclude==0 ){
- for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
- }
- }
- for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
- }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
- || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
- if( exclude ){
- exclude++;
- }else{
- for(j=i+7; isspace(z[j]); j++){}
- for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
- exclude = 1;
- for(k=0; k<nDefine; k++){
- if( strncmp(azDefine[k],&z[j],n)==0 && strlen(azDefine[k])==n ){
- exclude = 0;
- break;
- }
- }
- if( z[i+3]=='n' ) exclude = !exclude;
- if( exclude ){
- start = i;
- start_lineno = lineno;
- }
- }
- for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
- }
- }
- if( exclude ){
- fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
- exit(1);
- }
-}
-
-/* In spite of its name, this function is really a scanner. It read
-** in the entire input file (all at once) then tokenizes it. Each
-** token is passed to the function "parseonetoken" which builds all
-** the appropriate data structures in the global state vector "gp".
-*/
-void Parse(gp)
-struct lemon *gp;
-{
- struct pstate ps;
- FILE *fp;
- char *filebuf;
- int filesize;
- int lineno;
- int c;
- char *cp, *nextcp;
- int startline = 0;
-
- ps.gp = gp;
- ps.filename = gp->filename;
- ps.errorcnt = 0;
- ps.state = INITIALIZE;
-
- /* Begin by reading the input file */
- fp = fopen(ps.filename,"rb");
- if( fp==0 ){
- ErrorMsg(ps.filename,0,"Can't open this file for reading.");
- gp->errorcnt++;
- return;
- }
- fseek(fp,0,2);
- filesize = ftell(fp);
- rewind(fp);
- filebuf = (char *)malloc( filesize+1 );
- if( filebuf==0 ){
- ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
- filesize+1);
- gp->errorcnt++;
- return;
- }
- if( fread(filebuf,1,filesize,fp)!=filesize ){
- ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
- filesize);
- free(filebuf);
- gp->errorcnt++;
- return;
- }
- fclose(fp);
- filebuf[filesize] = 0;
-
- /* Make an initial pass through the file to handle %ifdef and %ifndef */
- preprocess_input(filebuf);
-
- /* Now scan the text of the input file */
- lineno = 1;
- for(cp=filebuf; (c= *cp)!=0; ){
- if( c=='\n' ) lineno++; /* Keep track of the line number */
- if( isspace(c) ){ cp++; continue; } /* Skip all white space */
- if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
- cp+=2;
- while( (c= *cp)!=0 && c!='\n' ) cp++;
- continue;
- }
- if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
- cp+=2;
- while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
- if( c=='\n' ) lineno++;
- cp++;
- }
- if( c ) cp++;
- continue;
- }
- ps.tokenstart = cp; /* Mark the beginning of the token */
- ps.tokenlineno = lineno; /* Linenumber on which token begins */
- if( c=='\"' ){ /* String literals */
- cp++;
- while( (c= *cp)!=0 && c!='\"' ){
- if( c=='\n' ) lineno++;
- cp++;
- }
- if( c==0 ){
- ErrorMsg(ps.filename,startline,
-"String starting on this line is not terminated before the end of the file.");
- ps.errorcnt++;
- nextcp = cp;
- }else{
- nextcp = cp+1;
- }
- }else if( c=='{' ){ /* A block of C code */
- int level;
- cp++;
- for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
- if( c=='\n' ) lineno++;
- else if( c=='{' ) level++;
- else if( c=='}' ) level--;
- else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
- int prevc;
- cp = &cp[2];
- prevc = 0;
- while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
- if( c=='\n' ) lineno++;
- prevc = c;
- cp++;
- }
- }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
- cp = &cp[2];
- while( (c= *cp)!=0 && c!='\n' ) cp++;
- if( c ) lineno++;
- }else if( c=='\'' || c=='\"' ){ /* String a character literals */
- int startchar, prevc;
- startchar = c;
- prevc = 0;
- for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
- if( c=='\n' ) lineno++;
- if( prevc=='\\' ) prevc = 0;
- else prevc = c;
- }
- }
- }
- if( c==0 ){
- ErrorMsg(ps.filename,ps.tokenlineno,
-"C code starting on this line is not terminated before the end of the file.");
- ps.errorcnt++;
- nextcp = cp;
- }else{
- nextcp = cp+1;
- }
- }else if( isalnum(c) ){ /* Identifiers */
- while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
- nextcp = cp;
- }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
- cp += 3;
- nextcp = cp;
- }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
- cp += 2;
- while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
- nextcp = cp;
- }else{ /* All other (one character) operators */
- cp++;
- nextcp = cp;
- }
- c = *cp;
- *cp = 0; /* Null terminate the token */
- parseonetoken(&ps); /* Parse the token */
- *cp = c; /* Restore the buffer */
- cp = nextcp;
- }
- free(filebuf); /* Release the buffer after parsing */
- gp->rule = ps.firstrule;
- gp->errorcnt = ps.errorcnt;
-}
-/*************************** From the file "plink.c" *********************/
-/*
-** Routines processing configuration follow-set propagation links
-** in the LEMON parser generator.
-*/
-static struct plink *plink_freelist = 0;
-
-/* Allocate a new plink */
-struct plink *Plink_new(){
- struct plink *new;
-
- if( plink_freelist==0 ){
- int i;
- int amt = 100;
- plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
- if( plink_freelist==0 ){
- fprintf(stderr,
- "Unable to allocate memory for a new follow-set propagation link.\n");
- exit(1);
- }
- for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
- plink_freelist[amt-1].next = 0;
- }
- new = plink_freelist;
- plink_freelist = plink_freelist->next;
- return new;
-}
-
-/* Add a plink to a plink list */
-void Plink_add(plpp,cfp)
-struct plink **plpp;
-struct config *cfp;
-{
- struct plink *new;
- new = Plink_new();
- new->next = *plpp;
- *plpp = new;
- new->cfp = cfp;
-}
-
-/* Transfer every plink on the list "from" to the list "to" */
-void Plink_copy(to,from)
-struct plink **to;
-struct plink *from;
-{
- struct plink *nextpl;
- while( from ){
- nextpl = from->next;
- from->next = *to;
- *to = from;
- from = nextpl;
- }
-}
-
-/* Delete every plink on the list */
-void Plink_delete(plp)
-struct plink *plp;
-{
- struct plink *nextpl;
-
- while( plp ){
- nextpl = plp->next;
- plp->next = plink_freelist;
- plink_freelist = plp;
- plp = nextpl;
- }
-}
-/*********************** From the file "report.c" **************************/
-/*
-** Procedures for generating reports and tables in the LEMON parser generator.
-*/
-
-/* Generate a filename with the given suffix. Space to hold the
-** name comes from malloc() and must be freed by the calling
-** function.
-*/
-PRIVATE char *file_makename(lemp,suffix)
-struct lemon *lemp;
-char *suffix;
-{
- char *name;
- char *cp;
-
- name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
- if( name==0 ){
- fprintf(stderr,"Can't allocate space for a filename.\n");
- exit(1);
- }
- strcpy(name,lemp->filename);
- cp = strrchr(name,'.');
- if( cp ) *cp = 0;
- strcat(name,suffix);
- return name;
-}
-
-/* Open a file with a name based on the name of the input file,
-** but with a different (specified) suffix, and return a pointer
-** to the stream */
-PRIVATE FILE *file_open(lemp,suffix,mode)
-struct lemon *lemp;
-char *suffix;
-char *mode;
-{
- FILE *fp;
-
- if( lemp->outname ) free(lemp->outname);
- lemp->outname = file_makename(lemp, suffix);
- fp = fopen(lemp->outname,mode);
- if( fp==0 && *mode=='w' ){
- fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
- lemp->errorcnt++;
- return 0;
- }
- return fp;
-}
-
-/* Duplicate the input file without comments and without actions
-** on rules */
-void Reprint(lemp)
-struct lemon *lemp;
-{
- struct rule *rp;
- struct symbol *sp;
- int i, j, maxlen, len, ncolumns, skip;
- printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
- maxlen = 10;
- for(i=0; i<lemp->nsymbol; i++){
- sp = lemp->symbols[i];
- len = strlen(sp->name);
- if( len>maxlen ) maxlen = len;
- }
- ncolumns = 76/(maxlen+5);
- if( ncolumns<1 ) ncolumns = 1;
- skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
- for(i=0; i<skip; i++){
- printf("//");
- for(j=i; j<lemp->nsymbol; j+=skip){
- sp = lemp->symbols[j];
- assert( sp->index==j );
- printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
- }
- printf("\n");
- }
- for(rp=lemp->rule; rp; rp=rp->next){
- printf("%s",rp->lhs->name);
- /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
- printf(" ::=");
- for(i=0; i<rp->nrhs; i++){
- sp = rp->rhs[i];
- printf(" %s", sp->name);
- if( sp->type==MULTITERMINAL ){
- for(j=1; j<sp->nsubsym; j++){
- printf("|%s", sp->subsym[j]->name);
- }
- }
- /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
- }
- printf(".");
- if( rp->precsym ) printf(" [%s]",rp->precsym->name);
- /* if( rp->code ) printf("\n %s",rp->code); */
- printf("\n");
- }
-}
-
-void ConfigPrint(fp,cfp)
-FILE *fp;
-struct config *cfp;
-{
- struct rule *rp;
- struct symbol *sp;
- int i, j;
- rp = cfp->rp;
- fprintf(fp,"%s ::=",rp->lhs->name);
- for(i=0; i<=rp->nrhs; i++){
- if( i==cfp->dot ) fprintf(fp," *");
- if( i==rp->nrhs ) break;
- sp = rp->rhs[i];
- fprintf(fp," %s", sp->name);
- if( sp->type==MULTITERMINAL ){
- for(j=1; j<sp->nsubsym; j++){
- fprintf(fp,"|%s",sp->subsym[j]->name);
- }
- }
- }
-}
-
-/* #define TEST */
-#if 0
-/* Print a set */
-PRIVATE void SetPrint(out,set,lemp)
-FILE *out;
-char *set;
-struct lemon *lemp;
-{
- int i;
- char *spacer;
- spacer = "";
- fprintf(out,"%12s[","");
- for(i=0; i<lemp->nterminal; i++){
- if( SetFind(set,i) ){
- fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
- spacer = " ";
- }
- }
- fprintf(out,"]\n");
-}
-
-/* Print a plink chain */
-PRIVATE void PlinkPrint(out,plp,tag)
-FILE *out;
-struct plink *plp;
-char *tag;
-{
- while( plp ){
- fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
- ConfigPrint(out,plp->cfp);
- fprintf(out,"\n");
- plp = plp->next;
- }
-}
-#endif
-
-/* Print an action to the given file descriptor. Return FALSE if
-** nothing was actually printed.
-*/
-int PrintAction(struct action *ap, FILE *fp, int indent){
- int result = 1;
- switch( ap->type ){
- case SHIFT:
- fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
- break;
- case REDUCE:
- fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
- break;
- case ACCEPT:
- fprintf(fp,"%*s accept",indent,ap->sp->name);
- break;
- case ERROR:
- fprintf(fp,"%*s error",indent,ap->sp->name);
- break;
- case CONFLICT:
- fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
- indent,ap->sp->name,ap->x.rp->index);
- break;
- case SH_RESOLVED:
- case RD_RESOLVED:
- case NOT_USED:
- result = 0;
- break;
- }
- return result;
-}
-
-/* Generate the "y.output" log file */
-void ReportOutput(lemp)
-struct lemon *lemp;
-{
- int i;
- struct state *stp;
- struct config *cfp;
- struct action *ap;
- FILE *fp;
-
- fp = file_open(lemp,".out","wb");
- if( fp==0 ) return;
- fprintf(fp," \b");
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- fprintf(fp,"State %d:\n",stp->statenum);
- if( lemp->basisflag ) cfp=stp->bp;
- else cfp=stp->cfp;
- while( cfp ){
- char buf[20];
- if( cfp->dot==cfp->rp->nrhs ){
- sprintf(buf,"(%d)",cfp->rp->index);
- fprintf(fp," %5s ",buf);
- }else{
- fprintf(fp," ");
- }
- ConfigPrint(fp,cfp);
- fprintf(fp,"\n");
-#if 0
- SetPrint(fp,cfp->fws,lemp);
- PlinkPrint(fp,cfp->fplp,"To ");
- PlinkPrint(fp,cfp->bplp,"From");
-#endif
- if( lemp->basisflag ) cfp=cfp->bp;
- else cfp=cfp->next;
- }
- fprintf(fp,"\n");
- for(ap=stp->ap; ap; ap=ap->next){
- if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
- }
- fprintf(fp,"\n");
- }
- fclose(fp);
- return;
-}
-
-/* Search for the file "name" which is in the same directory as
-** the exacutable */
-PRIVATE char *pathsearch(argv0,name,modemask)
-char *argv0;
-char *name;
-int modemask;
-{
- char *pathlist;
- char *path,*cp;
- char c;
- extern int access();
-
-#ifdef __WIN32__
- cp = strrchr(argv0,'\\');
-#else
- cp = strrchr(argv0,'/');
-#endif
- if( cp ){
- c = *cp;
- *cp = 0;
- path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
- if( path ) sprintf(path,"%s/%s",argv0,name);
- *cp = c;
- }else{
- extern char *getenv();
- pathlist = getenv("PATH");
- if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
- path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
- if( path!=0 ){
- while( *pathlist ){
- cp = strchr(pathlist,':');
- if( cp==0 ) cp = &pathlist[strlen(pathlist)];
- c = *cp;
- *cp = 0;
- sprintf(path,"%s/%s",pathlist,name);
- *cp = c;
- if( c==0 ) pathlist = "";
- else pathlist = &cp[1];
- if( access(path,modemask)==0 ) break;
- }
- }
- }
- return path;
-}
-
-/* Given an action, compute the integer value for that action
-** which is to be put in the action table of the generated machine.
-** Return negative if no action should be generated.
-*/
-PRIVATE int compute_action(lemp,ap)
-struct lemon *lemp;
-struct action *ap;
-{
- int act;
- switch( ap->type ){
- case SHIFT: act = ap->x.stp->statenum; break;
- case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
- case ERROR: act = lemp->nstate + lemp->nrule; break;
- case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
- default: act = -1; break;
- }
- return act;
-}
-
-#define LINESIZE 1000
-/* The next cluster of routines are for reading the template file
-** and writing the results to the generated parser */
-/* The first function transfers data from "in" to "out" until
-** a line is seen which begins with "%%". The line number is
-** tracked.
-**
-** if name!=0, then any word that begin with "Parse" is changed to
-** begin with *name instead.
-*/
-PRIVATE void tplt_xfer(name,in,out,lineno)
-char *name;
-FILE *in;
-FILE *out;
-int *lineno;
-{
- int i, iStart;
- char line[LINESIZE];
- while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
- (*lineno)++;
- iStart = 0;
- if( name ){
- for(i=0; line[i]; i++){
- if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
- && (i==0 || !isalpha(line[i-1]))
- ){
- if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
- fprintf(out,"%s",name);
- i += 4;
- iStart = i+1;
- }
- }
- }
- fprintf(out,"%s",&line[iStart]);
- }
-}
-
-/* The next function finds the template file and opens it, returning
-** a pointer to the opened file. */
-PRIVATE FILE *tplt_open(lemp)
-struct lemon *lemp;
-{
- static char templatename[] = "lempar.c";
- char buf[1000];
- FILE *in;
- char *tpltname;
- char *cp;
-
- cp = strrchr(lemp->filename,'.');
- if( cp ){
- sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
- }else{
- sprintf(buf,"%s.lt",lemp->filename);
- }
- if( access(buf,004)==0 ){
- tpltname = buf;
- }else if( access(templatename,004)==0 ){
- tpltname = templatename;
- }else{
- tpltname = pathsearch(lemp->argv0,templatename,0);
- }
- if( tpltname==0 ){
- fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
- templatename);
- lemp->errorcnt++;
- return 0;
- }
- in = fopen(tpltname,"rb");
- if( in==0 ){
- fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
- lemp->errorcnt++;
- return 0;
- }
- return in;
-}
-
-/* Print a #line directive line to the output file. */
-PRIVATE void tplt_linedir(out,lineno,filename)
-FILE *out;
-int lineno;
-char *filename;
-{
- fprintf(out,"#line %d \"",lineno);
- while( *filename ){
- if( *filename == '\\' ) putc('\\',out);
- putc(*filename,out);
- filename++;
- }
- fprintf(out,"\"\n");
-}
-
-/* Print a string to the file and keep the linenumber up to date */
-PRIVATE void tplt_print(out,lemp,str,strln,lineno)
-FILE *out;
-struct lemon *lemp;
-char *str;
-int strln;
-int *lineno;
-{
- if( str==0 ) return;
- tplt_linedir(out,strln,lemp->filename);
- (*lineno)++;
- while( *str ){
- if( *str=='\n' ) (*lineno)++;
- putc(*str,out);
- str++;
- }
- if( str[-1]!='\n' ){
- putc('\n',out);
- (*lineno)++;
- }
- tplt_linedir(out,*lineno+2,lemp->outname);
- (*lineno)+=2;
- return;
-}
-
-/*
-** The following routine emits code for the destructor for the
-** symbol sp
-*/
-void emit_destructor_code(out,sp,lemp,lineno)
-FILE *out;
-struct symbol *sp;
-struct lemon *lemp;
-int *lineno;
-{
- char *cp = 0;
-
- int linecnt = 0;
- if( sp->type==TERMINAL ){
- cp = lemp->tokendest;
- if( cp==0 ) return;
- tplt_linedir(out,lemp->tokendestln,lemp->filename);
- fprintf(out,"{");
- }else if( sp->destructor ){
- cp = sp->destructor;
- tplt_linedir(out,sp->destructorln,lemp->filename);
- fprintf(out,"{");
- }else if( lemp->vardest ){
- cp = lemp->vardest;
- if( cp==0 ) return;
- tplt_linedir(out,lemp->vardestln,lemp->filename);
- fprintf(out,"{");
- }else{
- assert( 0 ); /* Cannot happen */
- }
- for(; *cp; cp++){
- if( *cp=='$' && cp[1]=='$' ){
- fprintf(out,"(yypminor->yy%d)",sp->dtnum);
- cp++;
- continue;
- }
- if( *cp=='\n' ) linecnt++;
- fputc(*cp,out);
- }
- (*lineno) += 3 + linecnt;
- fprintf(out,"}\n");
- tplt_linedir(out,*lineno,lemp->outname);
- return;
-}
-
-/*
-** Return TRUE (non-zero) if the given symbol has a destructor.
-*/
-int has_destructor(sp, lemp)
-struct symbol *sp;
-struct lemon *lemp;
-{
- int ret;
- if( sp->type==TERMINAL ){
- ret = lemp->tokendest!=0;
- }else{
- ret = lemp->vardest!=0 || sp->destructor!=0;
- }
- return ret;
-}
-
-/*
-** Append text to a dynamically allocated string. If zText is 0 then
-** reset the string to be empty again. Always return the complete text
-** of the string (which is overwritten with each call).
-**
-** n bytes of zText are stored. If n==0 then all of zText up to the first
-** \000 terminator is stored. zText can contain up to two instances of
-** %d. The values of p1 and p2 are written into the first and second
-** %d.
-**
-** If n==-1, then the previous character is overwritten.
-*/
-PRIVATE char *append_str(char *zText, int n, int p1, int p2){
- static char *z = 0;
- static int alloced = 0;
- static int used = 0;
- int c;
- char zInt[40];
-
- if( zText==0 ){
- used = 0;
- return z;
- }
- if( n<=0 ){
- if( n<0 ){
- used += n;
- assert( used>=0 );
- }
- n = strlen(zText);
- }
- if( n+sizeof(zInt)*2+used >= alloced ){
- alloced = n + sizeof(zInt)*2 + used + 200;
- z = realloc(z, alloced);
- }
- if( z==0 ) return "";
- while( n-- > 0 ){
- c = *(zText++);
- if( c=='%' && zText[0]=='d' ){
- sprintf(zInt, "%d", p1);
- p1 = p2;
- strcpy(&z[used], zInt);
- used += strlen(&z[used]);
- zText++;
- n--;
- }else{
- z[used++] = c;
- }
- }
- z[used] = 0;
- return z;
-}
-
-/*
-** zCode is a string that is the action associated with a rule. Expand
-** the symbols in this string so that the refer to elements of the parser
-** stack.
-*/
-PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
- char *cp, *xp;
- int i;
- char lhsused = 0; /* True if the LHS element has been used */
- char used[MAXRHS]; /* True for each RHS element which is used */
-
- for(i=0; i<rp->nrhs; i++) used[i] = 0;
- lhsused = 0;
-
- append_str(0,0,0,0);
- for(cp=rp->code; *cp; cp++){
- if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
- char saved;
- for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
- saved = *xp;
- *xp = 0;
- if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
- append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
- cp = xp;
- lhsused = 1;
- }else{
- for(i=0; i<rp->nrhs; i++){
- if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
- if( cp!=rp->code && cp[-1]=='@' ){
- /* If the argument is of the form @X then substituted
- ** the token number of X, not the value of X */
- append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
- }else{
- struct symbol *sp = rp->rhs[i];
- int dtnum;
- if( sp->type==MULTITERMINAL ){
- dtnum = sp->subsym[0]->dtnum;
- }else{
- dtnum = sp->dtnum;
- }
- append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
- }
- cp = xp;
- used[i] = 1;
- break;
- }
- }
- }
- *xp = saved;
- }
- append_str(cp, 1, 0, 0);
- } /* End loop */
-
- /* Check to make sure the LHS has been used */
- if( rp->lhsalias && !lhsused ){
- ErrorMsg(lemp->filename,rp->ruleline,
- "Label \"%s\" for \"%s(%s)\" is never used.",
- rp->lhsalias,rp->lhs->name,rp->lhsalias);
- lemp->errorcnt++;
- }
-
- /* Generate destructor code for RHS symbols which are not used in the
- ** reduce code */
- for(i=0; i<rp->nrhs; i++){
- if( rp->rhsalias[i] && !used[i] ){
- ErrorMsg(lemp->filename,rp->ruleline,
- "Label %s for \"%s(%s)\" is never used.",
- rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
- lemp->errorcnt++;
- }else if( rp->rhsalias[i]==0 ){
- if( has_destructor(rp->rhs[i],lemp) ){
- append_str(" yy_destructor(%d,&yymsp[%d].minor);\n", 0,
- rp->rhs[i]->index,i-rp->nrhs+1);
- }else{
- /* No destructor defined for this term */
- }
- }
- }
- cp = append_str(0,0,0,0);
- rp->code = Strsafe(cp);
-}
-
-/*
-** Generate code which executes when the rule "rp" is reduced. Write
-** the code to "out". Make sure lineno stays up-to-date.
-*/
-PRIVATE void emit_code(out,rp,lemp,lineno)
-FILE *out;
-struct rule *rp;
-struct lemon *lemp;
-int *lineno;
-{
- char *cp;
- int linecnt = 0;
-
- /* Generate code to do the reduce action */
- if( rp->code ){
- tplt_linedir(out,rp->line,lemp->filename);
- fprintf(out,"{%s",rp->code);
- for(cp=rp->code; *cp; cp++){
- if( *cp=='\n' ) linecnt++;
- } /* End loop */
- (*lineno) += 3 + linecnt;
- fprintf(out,"}\n");
- tplt_linedir(out,*lineno,lemp->outname);
- } /* End if( rp->code ) */
-
- return;
-}
-
-/*
-** Print the definition of the union used for the parser's data stack.
-** This union contains fields for every possible data type for tokens
-** and nonterminals. In the process of computing and printing this
-** union, also set the ".dtnum" field of every terminal and nonterminal
-** symbol.
-*/
-void print_stack_union(out,lemp,plineno,mhflag)
-FILE *out; /* The output stream */
-struct lemon *lemp; /* The main info structure for this parser */
-int *plineno; /* Pointer to the line number */
-int mhflag; /* True if generating makeheaders output */
-{
- int lineno = *plineno; /* The line number of the output */
- char **types; /* A hash table of datatypes */
- int arraysize; /* Size of the "types" array */
- int maxdtlength; /* Maximum length of any ".datatype" field. */
- char *stddt; /* Standardized name for a datatype */
- int i,j; /* Loop counters */
- int hash; /* For hashing the name of a type */
- char *name; /* Name of the parser */
-
- /* Allocate and initialize types[] and allocate stddt[] */
- arraysize = lemp->nsymbol * 2;
- types = (char**)malloc( arraysize * sizeof(char*) );
- for(i=0; i<arraysize; i++) types[i] = 0;
- maxdtlength = 0;
- if( lemp->vartype ){
- maxdtlength = strlen(lemp->vartype);
- }
- for(i=0; i<lemp->nsymbol; i++){
- int len;
- struct symbol *sp = lemp->symbols[i];
- if( sp->datatype==0 ) continue;
- len = strlen(sp->datatype);
- if( len>maxdtlength ) maxdtlength = len;
- }
- stddt = (char*)malloc( maxdtlength*2 + 1 );
- if( types==0 || stddt==0 ){
- fprintf(stderr,"Out of memory.\n");
- exit(1);
- }
-
- /* Build a hash table of datatypes. The ".dtnum" field of each symbol
- ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
- ** used for terminal symbols. If there is no %default_type defined then
- ** 0 is also used as the .dtnum value for nonterminals which do not specify
- ** a datatype using the %type directive.
- */
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- char *cp;
- if( sp==lemp->errsym ){
- sp->dtnum = arraysize+1;
- continue;
- }
- if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
- sp->dtnum = 0;
- continue;
- }
- cp = sp->datatype;
- if( cp==0 ) cp = lemp->vartype;
- j = 0;
- while( isspace(*cp) ) cp++;
- while( *cp ) stddt[j++] = *cp++;
- while( j>0 && isspace(stddt[j-1]) ) j--;
- stddt[j] = 0;
- hash = 0;
- for(j=0; stddt[j]; j++){
- hash = hash*53 + stddt[j];
- }
- hash = (hash & 0x7fffffff)%arraysize;
- while( types[hash] ){
- if( strcmp(types[hash],stddt)==0 ){
- sp->dtnum = hash + 1;
- break;
- }
- hash++;
- if( hash>=arraysize ) hash = 0;
- }
- if( types[hash]==0 ){
- sp->dtnum = hash + 1;
- types[hash] = (char*)malloc( strlen(stddt)+1 );
- if( types[hash]==0 ){
- fprintf(stderr,"Out of memory.\n");
- exit(1);
- }
- strcpy(types[hash],stddt);
- }
- }
-
- /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
- name = lemp->name ? lemp->name : "Parse";
- lineno = *plineno;
- if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
- fprintf(out,"#define %sTOKENTYPE %s\n",name,
- lemp->tokentype?lemp->tokentype:"void*"); lineno++;
- if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
- fprintf(out,"typedef union {\n"); lineno++;
- fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
- for(i=0; i<arraysize; i++){
- if( types[i]==0 ) continue;
- fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
- free(types[i]);
- }
- fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
- free(stddt);
- free(types);
- fprintf(out,"} YYMINORTYPE;\n"); lineno++;
- *plineno = lineno;
-}
-
-/*
-** Return the name of a C datatype able to represent values between
-** lwr and upr, inclusive.
-*/
-static const char *minimum_size_type(int lwr, int upr){
- if( lwr>=0 ){
- if( upr<=255 ){
- return "unsigned char";
- }else if( upr<65535 ){
- return "unsigned short int";
- }else{
- return "unsigned int";
- }
- }else if( lwr>=-127 && upr<=127 ){
- return "signed char";
- }else if( lwr>=-32767 && upr<32767 ){
- return "short";
- }else{
- return "int";
- }
-}
-
-/*
-** Each state contains a set of token transaction and a set of
-** nonterminal transactions. Each of these sets makes an instance
-** of the following structure. An array of these structures is used
-** to order the creation of entries in the yy_action[] table.
-*/
-struct axset {
- struct state *stp; /* A pointer to a state */
- int isTkn; /* True to use tokens. False for non-terminals */
- int nAction; /* Number of actions */
-};
-
-/*
-** Compare to axset structures for sorting purposes
-*/
-static int axset_compare(const void *a, const void *b){
- struct axset *p1 = (struct axset*)a;
- struct axset *p2 = (struct axset*)b;
- return p2->nAction - p1->nAction;
-}
-
-/* Generate C source code for the parser */
-void ReportTable(lemp, mhflag)
-struct lemon *lemp;
-int mhflag; /* Output in makeheaders format if true */
-{
- FILE *out, *in;
- char line[LINESIZE];
- int lineno;
- struct state *stp;
- struct action *ap;
- struct rule *rp;
- struct acttab *pActtab;
- int i, j, n;
- char *name;
- int mnTknOfst, mxTknOfst;
- int mnNtOfst, mxNtOfst;
- struct axset *ax;
-
- in = tplt_open(lemp);
- if( in==0 ) return;
- out = file_open(lemp,".c","wb");
- if( out==0 ){
- fclose(in);
- return;
- }
- lineno = 1;
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the include code, if any */
- tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
- if( mhflag ){
- char *name = file_makename(lemp, ".h");
- fprintf(out,"#include \"%s\"\n", name); lineno++;
- free(name);
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate #defines for all tokens */
- if( mhflag ){
- char *prefix;
- fprintf(out,"#if INTERFACE\n"); lineno++;
- if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
- else prefix = "";
- for(i=1; i<lemp->nterminal; i++){
- fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
- lineno++;
- }
- fprintf(out,"#endif\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the defines */
- fprintf(out,"#define YYCODETYPE %s\n",
- minimum_size_type(0, lemp->nsymbol+5)); lineno++;
- fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
- fprintf(out,"#define YYACTIONTYPE %s\n",
- minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
- if( lemp->wildcard ){
- fprintf(out,"#define YYWILDCARD %d\n",
- lemp->wildcard->index); lineno++;
- }
- print_stack_union(out,lemp,&lineno,mhflag);
- if( lemp->stacksize ){
- if( atoi(lemp->stacksize)<=0 ){
- ErrorMsg(lemp->filename,0,
-"Illegal stack size: [%s]. The stack size should be an integer constant.",
- lemp->stacksize);
- lemp->errorcnt++;
- lemp->stacksize = "100";
- }
- fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
- }else{
- fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
- }
- if( mhflag ){
- fprintf(out,"#if INTERFACE\n"); lineno++;
- }
- name = lemp->name ? lemp->name : "Parse";
- if( lemp->arg && lemp->arg[0] ){
- int i;
- i = strlen(lemp->arg);
- while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
- while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
- fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
- fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
- fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
- name,lemp->arg,&lemp->arg[i]); lineno++;
- fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
- name,&lemp->arg[i],&lemp->arg[i]); lineno++;
- }else{
- fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
- fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
- fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
- fprintf(out,"#define %sARG_STORE\n",name); lineno++;
- }
- if( mhflag ){
- fprintf(out,"#endif\n"); lineno++;
- }
- fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
- fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
- fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
- fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
- if( lemp->has_fallback ){
- fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the action table and its associates:
- **
- ** yy_action[] A single table containing all actions.
- ** yy_lookahead[] A table containing the lookahead for each entry in
- ** yy_action. Used to detect hash collisions.
- ** yy_shift_ofst[] For each state, the offset into yy_action for
- ** shifting terminals.
- ** yy_reduce_ofst[] For each state, the offset into yy_action for
- ** shifting non-terminals after a reduce.
- ** yy_default[] Default action for each state.
- */
-
- /* Compute the actions on all states and count them up */
- ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
- if( ax==0 ){
- fprintf(stderr,"malloc failed\n");
- exit(1);
- }
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- ax[i*2].stp = stp;
- ax[i*2].isTkn = 1;
- ax[i*2].nAction = stp->nTknAct;
- ax[i*2+1].stp = stp;
- ax[i*2+1].isTkn = 0;
- ax[i*2+1].nAction = stp->nNtAct;
- }
- mxTknOfst = mnTknOfst = 0;
- mxNtOfst = mnNtOfst = 0;
-
- /* Compute the action table. In order to try to keep the size of the
- ** action table to a minimum, the heuristic of placing the largest action
- ** sets first is used.
- */
- qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
- pActtab = acttab_alloc();
- for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
- stp = ax[i].stp;
- if( ax[i].isTkn ){
- for(ap=stp->ap; ap; ap=ap->next){
- int action;
- if( ap->sp->index>=lemp->nterminal ) continue;
- action = compute_action(lemp, ap);
- if( action<0 ) continue;
- acttab_action(pActtab, ap->sp->index, action);
- }
- stp->iTknOfst = acttab_insert(pActtab);
- if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
- if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
- }else{
- for(ap=stp->ap; ap; ap=ap->next){
- int action;
- if( ap->sp->index<lemp->nterminal ) continue;
- if( ap->sp->index==lemp->nsymbol ) continue;
- action = compute_action(lemp, ap);
- if( action<0 ) continue;
- acttab_action(pActtab, ap->sp->index, action);
- }
- stp->iNtOfst = acttab_insert(pActtab);
- if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
- if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
- }
- }
- free(ax);
-
- /* Output the yy_action table */
- fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
- n = acttab_size(pActtab);
- for(i=j=0; i<n; i++){
- int action = acttab_yyaction(pActtab, i);
- if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", action);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the yy_lookahead table */
- fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
- for(i=j=0; i<n; i++){
- int la = acttab_yylookahead(pActtab, i);
- if( la<0 ) la = lemp->nsymbol;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", la);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the yy_shift_ofst[] table */
- fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
- n = lemp->nstate;
- while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
- fprintf(out, "#define YY_SHIFT_MAX %d\n", n-1); lineno++;
- fprintf(out, "static const %s yy_shift_ofst[] = {\n",
- minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
- for(i=j=0; i<n; i++){
- int ofst;
- stp = lemp->sorted[i];
- ofst = stp->iTknOfst;
- if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", ofst);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the yy_reduce_ofst[] table */
- fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
- n = lemp->nstate;
- while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
- fprintf(out, "#define YY_REDUCE_MAX %d\n", n-1); lineno++;
- fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
- minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
- for(i=j=0; i<n; i++){
- int ofst;
- stp = lemp->sorted[i];
- ofst = stp->iNtOfst;
- if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", ofst);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
-
- /* Output the default action table */
- fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
- n = lemp->nstate;
- for(i=j=0; i<n; i++){
- stp = lemp->sorted[i];
- if( j==0 ) fprintf(out," /* %5d */ ", i);
- fprintf(out, " %4d,", stp->iDflt);
- if( j==9 || i==n-1 ){
- fprintf(out, "\n"); lineno++;
- j = 0;
- }else{
- j++;
- }
- }
- fprintf(out, "};\n"); lineno++;
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the table of fallback tokens.
- */
- if( lemp->has_fallback ){
- for(i=0; i<lemp->nterminal; i++){
- struct symbol *p = lemp->symbols[i];
- if( p->fallback==0 ){
- fprintf(out, " 0, /* %10s => nothing */\n", p->name);
- }else{
- fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
- p->name, p->fallback->name);
- }
- lineno++;
- }
- }
- tplt_xfer(lemp->name, in, out, &lineno);
-
- /* Generate a table containing the symbolic name of every symbol
- */
- for(i=0; i<lemp->nsymbol; i++){
- sprintf(line,"\"%s\",",lemp->symbols[i]->name);
- fprintf(out," %-15s",line);
- if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
- }
- if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate a table containing a text string that describes every
- ** rule in the rule set of the grammer. This information is used
- ** when tracing REDUCE actions.
- */
- for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
- assert( rp->index==i );
- fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
- for(j=0; j<rp->nrhs; j++){
- struct symbol *sp = rp->rhs[j];
- fprintf(out," %s", sp->name);
- if( sp->type==MULTITERMINAL ){
- int k;
- for(k=1; k<sp->nsubsym; k++){
- fprintf(out,"|%s",sp->subsym[k]->name);
- }
- }
- }
- fprintf(out,"\",\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes every time a symbol is popped from
- ** the stack while processing errors or while destroying the parser.
- ** (In other words, generate the %destructor actions)
- */
- if( lemp->tokendest ){
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- if( sp==0 || sp->type!=TERMINAL ) continue;
- fprintf(out," case %d:\n",sp->index); lineno++;
- }
- for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
- if( i<lemp->nsymbol ){
- emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- }
- if( lemp->vardest ){
- struct symbol *dflt_sp = 0;
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- if( sp==0 || sp->type==TERMINAL ||
- sp->index<=0 || sp->destructor!=0 ) continue;
- fprintf(out," case %d:\n",sp->index); lineno++;
- dflt_sp = sp;
- }
- if( dflt_sp!=0 ){
- emit_destructor_code(out,dflt_sp,lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- }
- for(i=0; i<lemp->nsymbol; i++){
- struct symbol *sp = lemp->symbols[i];
- if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
- fprintf(out," case %d:\n",sp->index); lineno++;
-
- /* Combine duplicate destructors into a single case */
- for(j=i+1; j<lemp->nsymbol; j++){
- struct symbol *sp2 = lemp->symbols[j];
- if( sp2 && sp2->type!=TERMINAL && sp2->destructor
- && sp2->dtnum==sp->dtnum
- && strcmp(sp->destructor,sp2->destructor)==0 ){
- fprintf(out," case %d:\n",sp2->index); lineno++;
- sp2->destructor = 0;
- }
- }
-
- emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes whenever the parser stack overflows */
- tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate the table of rule information
- **
- ** Note: This code depends on the fact that rules are number
- ** sequentually beginning with 0.
- */
- for(rp=lemp->rule; rp; rp=rp->next){
- fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which execution during each REDUCE action */
- for(rp=lemp->rule; rp; rp=rp->next){
- if( rp->code ) translate_code(lemp, rp);
- }
- for(rp=lemp->rule; rp; rp=rp->next){
- struct rule *rp2;
- if( rp->code==0 ) continue;
- fprintf(out," case %d:\n",rp->index); lineno++;
- for(rp2=rp->next; rp2; rp2=rp2->next){
- if( rp2->code==rp->code ){
- fprintf(out," case %d:\n",rp2->index); lineno++;
- rp2->code = 0;
- }
- }
- emit_code(out,rp,lemp,&lineno);
- fprintf(out," break;\n"); lineno++;
- }
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes if a parse fails */
- tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes when a syntax error occurs */
- tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Generate code which executes when the parser accepts its input */
- tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
- tplt_xfer(lemp->name,in,out,&lineno);
-
- /* Append any addition code the user desires */
- tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
-
- fclose(in);
- fclose(out);
- return;
-}
-
-/* Generate a header file for the parser */
-void ReportHeader(lemp)
-struct lemon *lemp;
-{
- FILE *out, *in;
- char *prefix;
- char line[LINESIZE];
- char pattern[LINESIZE];
- int i;
-
- if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
- else prefix = "";
- in = file_open(lemp,".h","rb");
- if( in ){
- for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
- sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
- if( strcmp(line,pattern) ) break;
- }
- fclose(in);
- if( i==lemp->nterminal ){
- /* No change in the file. Don't rewrite it. */
- return;
- }
- }
- out = file_open(lemp,".h","wb");
- if( out ){
- for(i=1; i<lemp->nterminal; i++){
- fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
- }
- fclose(out);
- }
- return;
-}
-
-/* Reduce the size of the action tables, if possible, by making use
-** of defaults.
-**
-** In this version, we take the most frequent REDUCE action and make
-** it the default. Except, there is no default if the wildcard token
-** is a possible look-ahead.
-*/
-void CompressTables(lemp)
-struct lemon *lemp;
-{
- struct state *stp;
- struct action *ap, *ap2;
- struct rule *rp, *rp2, *rbest;
- int nbest, n;
- int i;
- int usesWildcard;
-
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- nbest = 0;
- rbest = 0;
- usesWildcard = 0;
-
- for(ap=stp->ap; ap; ap=ap->next){
- if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
- usesWildcard = 1;
- }
- if( ap->type!=REDUCE ) continue;
- rp = ap->x.rp;
- if( rp==rbest ) continue;
- n = 1;
- for(ap2=ap->next; ap2; ap2=ap2->next){
- if( ap2->type!=REDUCE ) continue;
- rp2 = ap2->x.rp;
- if( rp2==rbest ) continue;
- if( rp2==rp ) n++;
- }
- if( n>nbest ){
- nbest = n;
- rbest = rp;
- }
- }
-
- /* Do not make a default if the number of rules to default
- ** is not at least 1 or if the wildcard token is a possible
- ** lookahead.
- */
- if( nbest<1 || usesWildcard ) continue;
-
-
- /* Combine matching REDUCE actions into a single default */
- for(ap=stp->ap; ap; ap=ap->next){
- if( ap->type==REDUCE && ap->x.rp==rbest ) break;
- }
- assert( ap );
- ap->sp = Symbol_new("{default}");
- for(ap=ap->next; ap; ap=ap->next){
- if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
- }
- stp->ap = Action_sort(stp->ap);
- }
-}
-
-
-/*
-** Compare two states for sorting purposes. The smaller state is the
-** one with the most non-terminal actions. If they have the same number
-** of non-terminal actions, then the smaller is the one with the most
-** token actions.
-*/
-static int stateResortCompare(const void *a, const void *b){
- const struct state *pA = *(const struct state**)a;
- const struct state *pB = *(const struct state**)b;
- int n;
-
- n = pB->nNtAct - pA->nNtAct;
- if( n==0 ){
- n = pB->nTknAct - pA->nTknAct;
- }
- return n;
-}
-
-
-/*
-** Renumber and resort states so that states with fewer choices
-** occur at the end. Except, keep state 0 as the first state.
-*/
-void ResortStates(lemp)
-struct lemon *lemp;
-{
- int i;
- struct state *stp;
- struct action *ap;
-
- for(i=0; i<lemp->nstate; i++){
- stp = lemp->sorted[i];
- stp->nTknAct = stp->nNtAct = 0;
- stp->iDflt = lemp->nstate + lemp->nrule;
- stp->iTknOfst = NO_OFFSET;
- stp->iNtOfst = NO_OFFSET;
- for(ap=stp->ap; ap; ap=ap->next){
- if( compute_action(lemp,ap)>=0 ){
- if( ap->sp->index<lemp->nterminal ){
- stp->nTknAct++;
- }else if( ap->sp->index<lemp->nsymbol ){
- stp->nNtAct++;
- }else{
- stp->iDflt = compute_action(lemp, ap);
- }
- }
- }
- }
- qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
- stateResortCompare);
- for(i=0; i<lemp->nstate; i++){
- lemp->sorted[i]->statenum = i;
- }
-}
-
-
-/***************** From the file "set.c" ************************************/
-/*
-** Set manipulation routines for the LEMON parser generator.
-*/
-
-static int size = 0;
-
-/* Set the set size */
-void SetSize(n)
-int n;
-{
- size = n+1;
-}
-
-/* Allocate a new set */
-char *SetNew(){
- char *s;
- int i;
- s = (char*)malloc( size );
- if( s==0 ){
- extern void memory_error();
- memory_error();
- }
- for(i=0; i<size; i++) s[i] = 0;
- return s;
-}
-
-/* Deallocate a set */
-void SetFree(s)
-char *s;
-{
- free(s);
-}
-
-/* Add a new element to the set. Return TRUE if the element was added
-** and FALSE if it was already there. */
-int SetAdd(s,e)
-char *s;
-int e;
-{
- int rv;
- rv = s[e];
- s[e] = 1;
- return !rv;
-}
-
-/* Add every element of s2 to s1. Return TRUE if s1 changes. */
-int SetUnion(s1,s2)
-char *s1;
-char *s2;
-{
- int i, progress;
- progress = 0;
- for(i=0; i<size; i++){
- if( s2[i]==0 ) continue;
- if( s1[i]==0 ){
- progress = 1;
- s1[i] = 1;
- }
- }
- return progress;
-}
-/********************** From the file "table.c" ****************************/
-/*
-** All code in this file has been automatically generated
-** from a specification in the file
-** "table.q"
-** by the associative array code building program "aagen".
-** Do not edit this file! Instead, edit the specification
-** file, then rerun aagen.
-*/
-/*
-** Code for processing tables in the LEMON parser generator.
-*/
-
-PRIVATE int strhash(x)
-char *x;
-{
- int h = 0;
- while( *x) h = h*13 + *(x++);
- return h;
-}
-
-/* Works like strdup, sort of. Save a string in malloced memory, but
-** keep strings in a table so that the same string is not in more
-** than one place.
-*/
-char *Strsafe(y)
-char *y;
-{
- char *z;
-
- if( y==0 ) return 0;
- z = Strsafe_find(y);
- if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
- strcpy(z,y);
- Strsafe_insert(z);
- }
- MemoryCheck(z);
- return z;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x1".
-*/
-struct s_x1 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x1node *tbl; /* The data stored here */
- struct s_x1node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x1".
-*/
-typedef struct s_x1node {
- char *data; /* The data */
- struct s_x1node *next; /* Next entry with the same hash */
- struct s_x1node **from; /* Previous link */
-} x1node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x1 *x1a;
-
-/* Allocate a new associative array */
-void Strsafe_init(){
- if( x1a ) return;
- x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
- if( x1a ){
- x1a->size = 1024;
- x1a->count = 0;
- x1a->tbl = (x1node*)malloc(
- (sizeof(x1node) + sizeof(x1node*))*1024 );
- if( x1a->tbl==0 ){
- free(x1a);
- x1a = 0;
- }else{
- int i;
- x1a->ht = (x1node**)&(x1a->tbl[1024]);
- for(i=0; i<1024; i++) x1a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int Strsafe_insert(data)
-char *data;
-{
- x1node *np;
- int h;
- int ph;
-
- if( x1a==0 ) return 0;
- ph = strhash(data);
- h = ph & (x1a->size-1);
- np = x1a->ht[h];
- while( np ){
- if( strcmp(np->data,data)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x1a->count>=x1a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x1 array;
- array.size = size = x1a->size*2;
- array.count = x1a->count;
- array.tbl = (x1node*)malloc(
- (sizeof(x1node) + sizeof(x1node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x1node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x1a->count; i++){
- x1node *oldnp, *newnp;
- oldnp = &(x1a->tbl[i]);
- h = strhash(oldnp->data) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x1a->tbl);
- *x1a = array;
- }
- /* Insert the new data */
- h = ph & (x1a->size-1);
- np = &(x1a->tbl[x1a->count++]);
- np->data = data;
- if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
- np->next = x1a->ht[h];
- x1a->ht[h] = np;
- np->from = &(x1a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-char *Strsafe_find(key)
-char *key;
-{
- int h;
- x1node *np;
-
- if( x1a==0 ) return 0;
- h = strhash(key) & (x1a->size-1);
- np = x1a->ht[h];
- while( np ){
- if( strcmp(np->data,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Return a pointer to the (terminal or nonterminal) symbol "x".
-** Create a new symbol if this is the first time "x" has been seen.
-*/
-struct symbol *Symbol_new(x)
-char *x;
-{
- struct symbol *sp;
-
- sp = Symbol_find(x);
- if( sp==0 ){
- sp = (struct symbol *)malloc( sizeof(struct symbol) );
- MemoryCheck(sp);
- sp->name = Strsafe(x);
- sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
- sp->rule = 0;
- sp->fallback = 0;
- sp->prec = -1;
- sp->assoc = UNK;
- sp->firstset = 0;
- sp->lambda = B_FALSE;
- sp->destructor = 0;
- sp->datatype = 0;
- Symbol_insert(sp,sp->name);
- }
- return sp;
-}
-
-/* Compare two symbols for working purposes
-**
-** Symbols that begin with upper case letters (terminals or tokens)
-** must sort before symbols that begin with lower case letters
-** (non-terminals). Other than that, the order does not matter.
-**
-** We find experimentally that leaving the symbols in their original
-** order (the order they appeared in the grammar file) gives the
-** smallest parser tables in SQLite.
-*/
-int Symbolcmpp(struct symbol **a, struct symbol **b){
- int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
- int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
- return i1-i2;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x2".
-*/
-struct s_x2 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x2node *tbl; /* The data stored here */
- struct s_x2node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x2".
-*/
-typedef struct s_x2node {
- struct symbol *data; /* The data */
- char *key; /* The key */
- struct s_x2node *next; /* Next entry with the same hash */
- struct s_x2node **from; /* Previous link */
-} x2node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x2 *x2a;
-
-/* Allocate a new associative array */
-void Symbol_init(){
- if( x2a ) return;
- x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
- if( x2a ){
- x2a->size = 128;
- x2a->count = 0;
- x2a->tbl = (x2node*)malloc(
- (sizeof(x2node) + sizeof(x2node*))*128 );
- if( x2a->tbl==0 ){
- free(x2a);
- x2a = 0;
- }else{
- int i;
- x2a->ht = (x2node**)&(x2a->tbl[128]);
- for(i=0; i<128; i++) x2a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int Symbol_insert(data,key)
-struct symbol *data;
-char *key;
-{
- x2node *np;
- int h;
- int ph;
-
- if( x2a==0 ) return 0;
- ph = strhash(key);
- h = ph & (x2a->size-1);
- np = x2a->ht[h];
- while( np ){
- if( strcmp(np->key,key)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x2a->count>=x2a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x2 array;
- array.size = size = x2a->size*2;
- array.count = x2a->count;
- array.tbl = (x2node*)malloc(
- (sizeof(x2node) + sizeof(x2node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x2node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x2a->count; i++){
- x2node *oldnp, *newnp;
- oldnp = &(x2a->tbl[i]);
- h = strhash(oldnp->key) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->key = oldnp->key;
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x2a->tbl);
- *x2a = array;
- }
- /* Insert the new data */
- h = ph & (x2a->size-1);
- np = &(x2a->tbl[x2a->count++]);
- np->key = key;
- np->data = data;
- if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
- np->next = x2a->ht[h];
- x2a->ht[h] = np;
- np->from = &(x2a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-struct symbol *Symbol_find(key)
-char *key;
-{
- int h;
- x2node *np;
-
- if( x2a==0 ) return 0;
- h = strhash(key) & (x2a->size-1);
- np = x2a->ht[h];
- while( np ){
- if( strcmp(np->key,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Return the n-th data. Return NULL if n is out of range. */
-struct symbol *Symbol_Nth(n)
-int n;
-{
- struct symbol *data;
- if( x2a && n>0 && n<=x2a->count ){
- data = x2a->tbl[n-1].data;
- }else{
- data = 0;
- }
- return data;
-}
-
-/* Return the size of the array */
-int Symbol_count()
-{
- return x2a ? x2a->count : 0;
-}
-
-/* Return an array of pointers to all data in the table.
-** The array is obtained from malloc. Return NULL if memory allocation
-** problems, or if the array is empty. */
-struct symbol **Symbol_arrayof()
-{
- struct symbol **array;
- int i,size;
- if( x2a==0 ) return 0;
- size = x2a->count;
- array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
- if( array ){
- for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
- }
- return array;
-}
-
-/* Compare two configurations */
-int Configcmp(a,b)
-struct config *a;
-struct config *b;
-{
- int x;
- x = a->rp->index - b->rp->index;
- if( x==0 ) x = a->dot - b->dot;
- return x;
-}
-
-/* Compare two states */
-PRIVATE int statecmp(a,b)
-struct config *a;
-struct config *b;
-{
- int rc;
- for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
- rc = a->rp->index - b->rp->index;
- if( rc==0 ) rc = a->dot - b->dot;
- }
- if( rc==0 ){
- if( a ) rc = 1;
- if( b ) rc = -1;
- }
- return rc;
-}
-
-/* Hash a state */
-PRIVATE int statehash(a)
-struct config *a;
-{
- int h=0;
- while( a ){
- h = h*571 + a->rp->index*37 + a->dot;
- a = a->bp;
- }
- return h;
-}
-
-/* Allocate a new state structure */
-struct state *State_new()
-{
- struct state *new;
- new = (struct state *)malloc( sizeof(struct state) );
- MemoryCheck(new);
- return new;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x3".
-*/
-struct s_x3 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x3node *tbl; /* The data stored here */
- struct s_x3node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x3".
-*/
-typedef struct s_x3node {
- struct state *data; /* The data */
- struct config *key; /* The key */
- struct s_x3node *next; /* Next entry with the same hash */
- struct s_x3node **from; /* Previous link */
-} x3node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x3 *x3a;
-
-/* Allocate a new associative array */
-void State_init(){
- if( x3a ) return;
- x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
- if( x3a ){
- x3a->size = 128;
- x3a->count = 0;
- x3a->tbl = (x3node*)malloc(
- (sizeof(x3node) + sizeof(x3node*))*128 );
- if( x3a->tbl==0 ){
- free(x3a);
- x3a = 0;
- }else{
- int i;
- x3a->ht = (x3node**)&(x3a->tbl[128]);
- for(i=0; i<128; i++) x3a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int State_insert(data,key)
-struct state *data;
-struct config *key;
-{
- x3node *np;
- int h;
- int ph;
-
- if( x3a==0 ) return 0;
- ph = statehash(key);
- h = ph & (x3a->size-1);
- np = x3a->ht[h];
- while( np ){
- if( statecmp(np->key,key)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x3a->count>=x3a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x3 array;
- array.size = size = x3a->size*2;
- array.count = x3a->count;
- array.tbl = (x3node*)malloc(
- (sizeof(x3node) + sizeof(x3node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x3node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x3a->count; i++){
- x3node *oldnp, *newnp;
- oldnp = &(x3a->tbl[i]);
- h = statehash(oldnp->key) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->key = oldnp->key;
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x3a->tbl);
- *x3a = array;
- }
- /* Insert the new data */
- h = ph & (x3a->size-1);
- np = &(x3a->tbl[x3a->count++]);
- np->key = key;
- np->data = data;
- if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
- np->next = x3a->ht[h];
- x3a->ht[h] = np;
- np->from = &(x3a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-struct state *State_find(key)
-struct config *key;
-{
- int h;
- x3node *np;
-
- if( x3a==0 ) return 0;
- h = statehash(key) & (x3a->size-1);
- np = x3a->ht[h];
- while( np ){
- if( statecmp(np->key,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Return an array of pointers to all data in the table.
-** The array is obtained from malloc. Return NULL if memory allocation
-** problems, or if the array is empty. */
-struct state **State_arrayof()
-{
- struct state **array;
- int i,size;
- if( x3a==0 ) return 0;
- size = x3a->count;
- array = (struct state **)malloc( sizeof(struct state *)*size );
- if( array ){
- for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
- }
- return array;
-}
-
-/* Hash a configuration */
-PRIVATE int confighash(a)
-struct config *a;
-{
- int h=0;
- h = h*571 + a->rp->index*37 + a->dot;
- return h;
-}
-
-/* There is one instance of the following structure for each
-** associative array of type "x4".
-*/
-struct s_x4 {
- int size; /* The number of available slots. */
- /* Must be a power of 2 greater than or */
- /* equal to 1 */
- int count; /* Number of currently slots filled */
- struct s_x4node *tbl; /* The data stored here */
- struct s_x4node **ht; /* Hash table for lookups */
-};
-
-/* There is one instance of this structure for every data element
-** in an associative array of type "x4".
-*/
-typedef struct s_x4node {
- struct config *data; /* The data */
- struct s_x4node *next; /* Next entry with the same hash */
- struct s_x4node **from; /* Previous link */
-} x4node;
-
-/* There is only one instance of the array, which is the following */
-static struct s_x4 *x4a;
-
-/* Allocate a new associative array */
-void Configtable_init(){
- if( x4a ) return;
- x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
- if( x4a ){
- x4a->size = 64;
- x4a->count = 0;
- x4a->tbl = (x4node*)malloc(
- (sizeof(x4node) + sizeof(x4node*))*64 );
- if( x4a->tbl==0 ){
- free(x4a);
- x4a = 0;
- }else{
- int i;
- x4a->ht = (x4node**)&(x4a->tbl[64]);
- for(i=0; i<64; i++) x4a->ht[i] = 0;
- }
- }
-}
-/* Insert a new record into the array. Return TRUE if successful.
-** Prior data with the same key is NOT overwritten */
-int Configtable_insert(data)
-struct config *data;
-{
- x4node *np;
- int h;
- int ph;
-
- if( x4a==0 ) return 0;
- ph = confighash(data);
- h = ph & (x4a->size-1);
- np = x4a->ht[h];
- while( np ){
- if( Configcmp(np->data,data)==0 ){
- /* An existing entry with the same key is found. */
- /* Fail because overwrite is not allows. */
- return 0;
- }
- np = np->next;
- }
- if( x4a->count>=x4a->size ){
- /* Need to make the hash table bigger */
- int i,size;
- struct s_x4 array;
- array.size = size = x4a->size*2;
- array.count = x4a->count;
- array.tbl = (x4node*)malloc(
- (sizeof(x4node) + sizeof(x4node*))*size );
- if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
- array.ht = (x4node**)&(array.tbl[size]);
- for(i=0; i<size; i++) array.ht[i] = 0;
- for(i=0; i<x4a->count; i++){
- x4node *oldnp, *newnp;
- oldnp = &(x4a->tbl[i]);
- h = confighash(oldnp->data) & (size-1);
- newnp = &(array.tbl[i]);
- if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
- newnp->next = array.ht[h];
- newnp->data = oldnp->data;
- newnp->from = &(array.ht[h]);
- array.ht[h] = newnp;
- }
- free(x4a->tbl);
- *x4a = array;
- }
- /* Insert the new data */
- h = ph & (x4a->size-1);
- np = &(x4a->tbl[x4a->count++]);
- np->data = data;
- if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
- np->next = x4a->ht[h];
- x4a->ht[h] = np;
- np->from = &(x4a->ht[h]);
- return 1;
-}
-
-/* Return a pointer to data assigned to the given key. Return NULL
-** if no such key. */
-struct config *Configtable_find(key)
-struct config *key;
-{
- int h;
- x4node *np;
-
- if( x4a==0 ) return 0;
- h = confighash(key) & (x4a->size-1);
- np = x4a->ht[h];
- while( np ){
- if( Configcmp(np->data,key)==0 ) break;
- np = np->next;
- }
- return np ? np->data : 0;
-}
-
-/* Remove all data from the table. Pass each data to the function "f"
-** as it is removed. ("f" may be null to avoid this step.) */
-void Configtable_clear(f)
-int(*f)(/* struct config * */);
-{
- int i;
- if( x4a==0 || x4a->count==0 ) return;
- if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
- for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
- x4a->count = 0;
- return;
-}